
	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 1	

	

www.in28minutes.com	

Java	Interview	
Questions	and	
Answers	

	

2	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

Java Interview Companion - Books & Videos 	

Copyright © 2016 by in28Minutes

All rights reserved. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Trademarked names may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, we use the names only
in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the US and other countries.

In28Minutes is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Ranga Karanam

For information on translations, please contact Ranga at
http://www.in28minutes.com

The information in this book is distributed on an “as is” basis, without
warranty. Although every precaution has been taken in the preparation of this
work, neither the author(s) nor our company shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at
https://github.com/in28minutes/JavaInterviewQuestionsAndAnswers/

	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 3	

	
TABLE	OF	CONTENTS	

JAVA	PLATFORM	..	10	
1. WHY	IS	JAVA	SO	POPULAR?	...	10	
2. WHAT	IS	PLATFORM	INDEPENDENCE?	...	10	
3. WHAT	IS	BYTECODE?	...	11	
4. COMPARE	JDK	VS	JVM	VS	JRE.	...	11	
5. WHAT	ARE	THE	IMPORTANT	DIFFERENCES	BETWEEN	C++	AND	JAVA?	..	12	
6. WHAT	IS	THE	ROLE	FOR	A	CLASSLOADER	IN	JAVA?	...	12	

WRAPPER	CLASSES	...	14	
7. WHAT	ARE	WRAPPER	CLASSES?	..	14	
8. WHY	DO	WE	NEED	WRAPPER	CLASSES	IN	JAVA?	..	14	
9. WHAT	ARE	THE	DIFFERENT	WAYS	OF	CREATING	WRAPPER	CLASS	INSTANCES?	14	
10. WHAT	ARE	DIFFERENCES	IN	THE	TWO	WAYS	OF	CREATING	WRAPPER	CLASSES?	15	
11. WHAT	IS	AUTO	BOXING?	..	16	
12. WHAT	ARE	THE	ADVANTAGES	OF	AUTO	BOXING?	..	16	
13. WHAT	IS	CASTING?	..	16	
14. WHAT	IS	IMPLICIT	CASTING?	...	16	
15. WHAT	IS	EXPLICIT	CASTING?	..	17	

STRINGS	...	18	
16. ARE	ALL	STRING’S	IMMUTABLE?	...	18	
17. WHERE	ARE	STRING	VALUES	STORED	IN	MEMORY?	...	18	
18. WHY	SHOULD	YOU	BE	CAREFUL	ABOUT	STRING	CONCATENATION(+)	OPERATOR	IN	LOOPS?	18	
19. HOW	DO	YOU	SOLVE	ABOVE	PROBLEM?	...	19	
20. WHAT	ARE	DIFFERENCES	BETWEEN	STRING	AND	STRINGBUFFER?	...	19	
21. WHAT	ARE	DIFFERENCES	BETWEEN	STRINGBUILDER	AND	STRINGBUFFER?	19	
22. CAN	YOU	GIVE	EXAMPLES	OF	DIFFERENT	UTILITY	METHODS	IN	STRING	CLASS?	19	

OBJECT	ORIENTED	PROGRAMMING	BASICS	...	21	
23. WHAT	IS	A	CLASS?	...	21	
24. WHAT	IS	AN	OBJECT?	...	21	
25. WHAT	IS	STATE	OF	AN	OBJECT?	..	21	
26. WHAT	IS	BEHAVIOR	OF	AN	OBJECT?	..	22	
27. WHAT	IS	THE	SUPER	CLASS	OF	EVERY	CLASS	IN	JAVA?	...	22	
28. EXPLAIN	ABOUT	TOSTRING	METHOD	?	...	22	
29. WHAT	IS	THE	USE	OF	EQUALS	METHOD	IN	JAVA?	...	23	
30. WHAT	ARE	THE	IMPORTANT	THINGS	TO	CONSIDER	WHEN	IMPLEMENTING	EQUALS	METHOD?	24	
31. WHAT	IS	THE	HASHCODE	METHOD	USED	FOR	IN	JAVA?	...	25	
32. EXPLAIN	INHERITANCE	WITH	EXAMPLES.	..	25	

4	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

33. WHAT	IS	METHOD	OVERLOADING?	..	26	
34. WHAT	IS	METHOD	OVERRIDING?	...	27	
35. CAN	SUPER	CLASS	REFERENCE	VARIABLE	CAN	HOLD	AN	OBJECT	OF	SUB	CLASS?	27	
36. IS	MULTIPLE	INHERITANCE	ALLOWED	IN	JAVA?	..	28	
37. WHAT	IS	AN	INTERFACE?	...	28	
38. HOW	DO	YOU	DEFINE	AN	INTERFACE?	...	28	
39. HOW	DO	YOU	IMPLEMENT	AN	INTERFACE?	...	29	
40. CAN	YOU	EXPLAIN	A	FEW	TRICKY	THINGS	ABOUT	INTERFACES?	...	29	
41. CAN	YOU	EXTEND	AN	INTERFACE?	...	30	
42. CAN	A	CLASS	EXTEND	MULTIPLE	INTERFACES?	...	30	
43. WHAT	IS	AN	ABSTRACT	CLASS?	..	31	
44. WHEN	DO	YOU	USE	AN	ABSTRACT	CLASS?	..	31	
45. HOW	DO	YOU	DEFINE	AN	ABSTRACT	METHOD?	..	31	
46. COMPARE	ABSTRACT	CLASS	VS	INTERFACE?	...	32	
47. WHAT	IS	A	CONSTRUCTOR?	...	32	
48. WHAT	IS	A	DEFAULT	CONSTRUCTOR?	..	32	
49. WILL	THIS	CODE	COMPILE?	..	33	
50. HOW	DO	YOU	CALL	A	SUPER	CLASS	CONSTRUCTOR	FROM	A	CONSTRUCTOR?	33	
51. WILL	THIS	CODE	COMPILE?	..	33	
52. WHAT	IS	THE	USE	OF	THIS()?	...	33	
53. CAN	A	CONSTRUCTOR	BE	CALLED	DIRECTLY	FROM	A	METHOD?	...	34	
54. IS	A	SUPER	CLASS	CONSTRUCTOR	CALLED	EVEN	WHEN	THERE	IS	NO	EXPLICIT	CALL	FROM	A	SUB	CLASS	

CONSTRUCTOR?	...	34	

ADVANCED	OBJECT	ORIENTED	CONCEPTS	..	35	
55. WHAT	IS	POLYMORPHISM?	...	35	
56. WHAT	IS	THE	USE	OF	INSTANCEOF	OPERATOR	IN	JAVA?	..	36	
57. WHAT	IS	COUPLING?	..	37	
58. WHAT	IS	COHESION?	..	38	
59. WHAT	IS	ENCAPSULATION?	...	39	
60. WHAT	IS	AN	INNER	CLASS?	..	41	
61. WHAT	IS	A	STATIC	INNER	CLASS?	..	41	
62. CAN	YOU	CREATE	AN	INNER	CLASS	INSIDE	A	METHOD?	..	41	
63. WHAT	IS	AN	ANONYMOUS	CLASS?	...	41	

MODIFIERS	...	43	
64. WHAT	IS	DEFAULT	CLASS	MODIFIER?	...	43	
65. WHAT	IS	PRIVATE	ACCESS	MODIFIER?	..	43	
66. WHAT	IS	DEFAULT	OR	PACKAGE	ACCESS	MODIFIER?	...	43	
67. WHAT	IS	PROTECTED	ACCESS	MODIFIER?	..	43	
68. WHAT	IS	PUBLIC	ACCESS	MODIFIER?	..	44	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 5	

	
69. WHAT	ACCESS	TYPES	OF	VARIABLES	CAN	BE	ACCESSED	FROM	A	CLASS	IN	SAME	PACKAGE?	44	
70. WHAT	ACCESS	TYPES	OF	VARIABLES	CAN	BE	ACCESSED	FROM	A	CLASS	IN	DIFFERENT	PACKAGE?	44	
71. WHAT	ACCESS	TYPES	OF	VARIABLES	CAN	BE	ACCESSED	FROM	A	SUB	CLASS	IN	SAME	PACKAGE?	45	
72. WHAT	ACCESS	TYPES	OF	VARIABLES	CAN	BE	ACCESSED	FROM	A	SUB	CLASS	IN	DIFFERENT	PACKAGE?	...	45	
73. WHAT	IS	THE	USE	OF	A	FINAL	MODIFIER	ON	A	CLASS?	...	46	
74. WHAT	IS	THE	USE	OF	A	FINAL	MODIFIER	ON	A	METHOD?	...	46	
75. WHAT	IS	A	FINAL	VARIABLE?	..	46	
76. WHAT	IS	A	FINAL	ARGUMENT?	...	47	
77. WHAT	HAPPENS	WHEN	A	VARIABLE	IS	MARKED	AS	VOLATILE?	..	47	
78. WHAT	IS	A	STATIC	VARIABLE?	..	47	

CONDITIONS	&	LOOPS	...	49	
79. WHY	SHOULD	YOU	ALWAYS	USE	BLOCKS	AROUND	IF	STATEMENT?	..	49	
80. GUESS	THE	OUTPUT	..	49	
81. GUESS	THE	OUTPUT	..	49	
82. GUESS	THE	OUTPUT	OF	THIS	SWITCH	BLOCK.	...	49	
83. GUESS	THE	OUTPUT	OF	THIS	SWITCH	BLOCK?	..	50	
84. SHOULD	DEFAULT	BE	THE	LAST	CASE	IN	A	SWITCH	STATEMENT?	..	50	
85. CAN	A	SWITCH	STATEMENT	BE	USED	AROUND	A	STRING	...	51	
86. GUESS	THE	OUTPUT	OF	THIS	FOR	LOOP	..	51	
87. WHAT	IS	AN	ENHANCED	FOR	LOOP?	...	51	
88. WHAT	IS	THE	OUTPUT	OF	THE	FOR	LOOP	BELOW?	..	51	
89. WHAT	IS	THE	OUTPUT	OF	THE	PROGRAM	BELOW?	...	51	
90. WHAT	IS	THE	OUTPUT	OF	THE	PROGRAM	BELOW?	...	52	

EXCEPTION	HANDLING	...	53	
91. WHY	IS	EXCEPTION	HANDLING	IMPORTANT?	..	53	
92. WHAT	DESIGN	PATTERN	IS	USED	TO	IMPLEMENT	EXCEPTION	HANDLING	FEATURES	IN	MOST	LANGUAGES?

	...	53	
93. WHAT	IS	THE	NEED	FOR	FINALLY	BLOCK?	..	54	
94. IN	WHAT	SCENARIOS	IS	CODE	IN	FINALLY	NOT	EXECUTED?	..	55	
95. WILL	FINALLY	BE	EXECUTED	IN	THE	PROGRAM	BELOW?	...	56	
96. IS	TRY	WITHOUT	A	CATCH	IS	ALLOWED?	...	56	
97. IS	TRY	WITHOUT	CATCH	AND	FINALLY	ALLOWED?	...	56	
98. CAN	YOU	EXPLAIN	THE	HIERARCHY	OF	EXCEPTION	HANDLING	CLASSES?	...	57	
99. WHAT	IS	THE	DIFFERENCE	BETWEEN	ERROR	AND	EXCEPTION?	...	57	
100. WHAT	IS	THE	DIFFERENCE	BETWEEN	CHECKED	EXCEPTIONS	AND	UNCHECKED	EXCEPTIONS?	57	
101. HOW	DO	YOU	THROW	AN	EXCEPTION	FROM	A	METHOD?	..	58	
102. WHAT	HAPPENS	WHEN	YOU	THROW	A	CHECKED	EXCEPTION	FROM	A	METHOD?	58	

6	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

103. WHAT	ARE	THE	OPTIONS	YOU	HAVE	TO	ELIMINATE	COMPILATION	ERRORS	WHEN	HANDLING	CHECKED	

EXCEPTIONS?	..	59	
104. HOW	DO	YOU	CREATE	A	CUSTOM	EXCEPTION?	...	60	
105. HOW	DO	YOU	HANDLE	MULTIPLE	EXCEPTION	TYPES	WITH	SAME	EXCEPTION	HANDLING	BLOCK?	61	
106. CAN	YOU	EXPLAIN	ABOUT	TRY	WITH	RESOURCES?	..	62	
107. HOW	DOES	TRY	WITH	RESOURCES	WORK?	..	62	
108. CAN	YOU	EXPLAIN	A	FEW	EXCEPTION	HANDLING	BEST	PRACTICES?	...	62	

MISCELLANEOUS	TOPICS	..	63	
109. WHAT	ARE	THE	DEFAULT	VALUES	IN	AN	ARRAY?	..	63	
110. HOW	DO	YOU	LOOP	AROUND	AN	ARRAY	USING	ENHANCED	FOR	LOOP?	..	63	
111. HOW	DO	YOU	PRINT	THE	CONTENT	OF	AN	ARRAY?	...	63	
112. HOW	DO	YOU	COMPARE	TWO	ARRAYS?	...	64	
113. WHAT	IS	AN	ENUM?	..	64	
114. CAN	YOU	USE	A	SWITCH	STATEMENT	AROUND	AN	ENUM?	..	64	
115. WHAT	ARE	VARIABLE	ARGUMENTS	OR	VARARGS?	...	64	
116. WHAT	ARE	ASSERTS	USED	FOR?	...	65	
117. WHEN	SHOULD	ASSERTS	BE	USED?	...	65	
118. WHAT	IS	GARBAGE	COLLECTION?	...	65	
119. CAN	YOU	EXPLAIN	GARBAGE	COLLECTION	WITH	AN	EXAMPLE?	..	65	
120. WHEN	IS	GARBAGE	COLLECTION	RUN?	..	65	
121. WHAT	ARE	BEST	PRACTICES	ON	GARBAGE	COLLECTION?	...	66	
122. WHAT	ARE	INITIALIZATION	BLOCKS?	...	66	
123. WHAT	IS	A	STATIC	INITIALIZER?	..	66	
124. WHAT	IS	AN	INSTANCE	INITIALIZER	BLOCK?	..	66	
125. WHAT	IS	TOKENIZING?	...	67	
126. CAN	YOU	GIVE	AN	EXAMPLE	OF	TOKENIZING?	...	67	
127. WHAT	IS	SERIALIZATION?	..	67	
128. HOW	DO	YOU	SERIALIZE	AN	OBJECT	USING	SERIALIZABLE	INTERFACE?	..	68	
129. HOW	DO	YOU	DE-SERIALIZE	IN	JAVA?	..	68	
130. WHAT	DO	YOU	DO	IF	ONLY	PARTS	OF	THE	OBJECT	HAVE	TO	BE	SERIALIZED?	68	
131. HOW	DO	YOU	SERIALIZE	A	HIERARCHY	OF	OBJECTS?	...	69	
132. ARE	THE	CONSTRUCTORS	IN	AN	OBJECT	INVOKED	WHEN	IT	IS	DE-SERIALIZED?	70	
133. ARE	THE	VALUES	OF	STATIC	VARIABLES	STORED	WHEN	AN	OBJECT	IS	SERIALIZED?	70	

COLLECTIONS	...	71	
134. WHY	DO	WE	NEED	COLLECTIONS	IN	JAVA?	...	71	
135. WHAT	ARE	THE	IMPORTANT	INTERFACES	IN	THE	COLLECTION	HIERARCHY?	71	
136. WHAT	ARE	THE	IMPORTANT	METHODS	THAT	ARE	DECLARED	IN	THE	COLLECTION	INTERFACE?	72	
137. CAN	YOU	EXPLAIN	BRIEFLY	ABOUT	THE	LIST	INTERFACE?	...	72	
138. EXPLAIN	ABOUT	ARRAYLIST	WITH	AN	EXAMPLE?	..	73	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 7	

	
139. CAN	AN	ARRAYLIST	HAVE	DUPLICATE	ELEMENTS?	..	73	
140. HOW	DO	YOU	ITERATE	AROUND	AN	ARRAYLIST	USING	ITERATOR?	..	73	
141. HOW	DO	YOU	SORT	AN	ARRAYLIST?	..	74	
142. HOW	DO	YOU	SORT	ELEMENTS	IN	AN	ARRAYLIST	USING	COMPARABLE	INTERFACE?	74	
143. HOW	DO	YOU	SORT	ELEMENTS	IN	AN	ARRAYLIST	USING	COMPARATOR	INTERFACE?	75	
144. WHAT	IS	VECTOR	CLASS?	HOW	IS	IT	DIFFERENT	FROM	AN	ARRAYLIST?	..	75	
145. WHAT	IS	LINKEDLIST?	WHAT	INTERFACES	DOES	IT	IMPLEMENT?	HOW	IS	IT	DIFFERENT	FROM	AN	

ARRAYLIST?	..	76	
146. CAN	YOU	BRIEFLY	EXPLAIN	ABOUT	THE	SET	INTERFACE?	..	76	
147. WHAT	ARE	THE	IMPORTANT	INTERFACES	RELATED	TO	THE	SET	INTERFACE?	76	
148. WHAT	IS	THE	DIFFERENCE	BETWEEN	SET	AND	SORTEDSET	INTERFACES?	..	77	
149. CAN	YOU	GIVE	EXAMPLES	OF	CLASSES	THAT	IMPLEMENT	THE	SET	INTERFACE?	77	
150. WHAT	IS	A	HASHSET?	..	78	
151. WHAT	IS	A	LINKEDHASHSET?	HOW	IS	DIFFERENT	FROM	A	HASHSET?	...	78	
152. WHAT	IS	A	TREESET?	HOW	IS	DIFFERENT	FROM	A	HASHSET?	..	79	
153. CAN	YOU	GIVE	EXAMPLES	OF	IMPLEMENTATIONS	OF	NAVIGABLESET?	...	79	
154. EXPLAIN	BRIEFLY	ABOUT	QUEUE	INTERFACE?	..	80	
155. WHAT	ARE	THE	IMPORTANT	INTERFACES	RELATED	TO	THE	QUEUE	INTERFACE?	80	
156. EXPLAIN	ABOUT	THE	DEQUE	INTERFACE?	...	80	
157. EXPLAIN	THE	BLOCKINGQUEUE	INTERFACE?	...	81	
158. WHAT	IS	A	PRIORITYQUEUE?	...	82	
159. CAN	YOU	GIVE	EXAMPLE	IMPLEMENTATIONS	OF	THE	BLOCKINGQUEUE	INTERFACE?	83	
160. CAN	YOU	BRIEFLY	EXPLAIN	ABOUT	THE	MAP	INTERFACE?	..	83	
161. WHAT	IS	DIFFERENCE	BETWEEN	MAP	AND	SORTEDMAP?	...	84	
162. WHAT	IS	A	HASHMAP?	...	84	
163. WHAT	ARE	THE	DIFFERENT	METHODS	IN	A	HASH	MAP?	..	85	
164. WHAT	IS	A	TREEMAP?	HOW	IS	DIFFERENT	FROM	A	HASHMAP?	..	85	
165. CAN	YOU	GIVE	AN	EXAMPLE	OF	IMPLEMENTATION	OF	NAVIGABLEMAP	INTERFACE?	86	
166. WHAT	ARE	THE	STATIC	METHODS	PRESENT	IN	THE	COLLECTIONS	CLASS?	..	87	

ADVANCED	COLLECTIONS	..	88	
167. WHAT	IS	THE	DIFFERENCE	BETWEEN	SYNCHRONIZED	AND	CONCURRENT	COLLECTIONS	IN	JAVA?	88	
168. EXPLAIN	ABOUT	THE	NEW	CONCURRENT	COLLECTIONS	IN	JAVA?	...	88	
169. EXPLAIN	ABOUT	COPYONWRITE	CONCURRENT	COLLECTIONS	APPROACH?	88	
170. WHAT	IS	COMPAREANDSWAP	APPROACH?	..	88	
171. WHAT	IS	A	LOCK?	HOW	IS	IT	DIFFERENT	FROM	USING	SYNCHRONIZED	APPROACH?	89	
172. WHAT	IS	INITIAL	CAPACITY	OF	A	JAVA	COLLECTION?	...	89	
173. WHAT	IS	LOAD	FACTOR?	...	89	
174. WHEN	DOES	A	JAVA	COLLECTION	THROW	UNSUPPORTEDOPERATIONEXCEPTION?	89	

8	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

175. WHAT	IS	DIFFERENCE	BETWEEN	FAIL-SAFE	AND	FAIL-FAST	ITERATORS?	..	90	
176. WHAT	ARE	ATOMIC	OPERATIONS	IN	JAVA?	...	91	
177. WHAT	IS	BLOCKINGQUEUE	IN	JAVA?	...	91	

GENERICS	...	92	
178. WHAT	ARE	GENERICS?	...	92	
179. WHY	DO	WE	NEED	GENERICS?	CAN	YOU	GIVE	AN	EXAMPLE	OF	HOW	GENERICS	MAKE	A	PROGRAM	MORE	

FLEXIBLE?	...	92	
180. HOW	DO	YOU	DECLARE	A	GENERIC	CLASS?	...	93	
181. WHAT	ARE	THE	RESTRICTIONS	IN	USING	GENERIC	TYPE	THAT	IS	DECLARED	IN	A	CLASS	DECLARATION?	..	93	
182. HOW	CAN	WE	RESTRICT	GENERICS	TO	A	SUBCLASS	OF	PARTICULAR	CLASS?	93	
183. HOW	CAN	WE	RESTRICT	GENERICS	TO	A	SUPER	CLASS	OF	PARTICULAR	CLASS?	94	
184. CAN	YOU	GIVE	AN	EXAMPLE	OF	A	GENERIC	METHOD?	..	94	

MULTI	THREADING	..	95	
185. WHAT	IS	THE	NEED	FOR	THREADS	IN	JAVA?	..	95	
186. HOW	DO	YOU	CREATE	A	THREAD?	...	95	
187. HOW	DO	YOU	CREATE	A	THREAD	BY	EXTENDING	THREAD	CLASS?	..	95	
188. HOW	DO	YOU	CREATE	A	THREAD	BY	IMPLEMENTING	RUNNABLE	INTERFACE?	96	
189. HOW	DO	YOU	RUN	A	THREAD	IN	JAVA?	...	96	
190. WHAT	ARE	THE	DIFFERENT	STATES	OF	A	THREAD?	...	96	
191. WHAT	IS	PRIORITY	OF	A	THREAD?	HOW	DO	YOU	CHANGE	THE	PRIORITY	OF	A	THREAD?	97	
192. WHAT	IS	EXECUTORSERVICE?	..	98	
193. CAN	YOU	GIVE	AN	EXAMPLE	FOR	EXECUTORSERVICE?	...	98	
194. EXPLAIN	DIFFERENT	WAYS	OF	CREATING	EXECUTOR	SERVICES.	...	98	
195. HOW	DO	YOU	CHECK	WHETHER	AN	EXECUTIONSERVICE	TASK	EXECUTED	SUCCESSFULLY?	99	
196. WHAT	IS	CALLABLE?	HOW	DO	YOU	EXECUTE	A	CALLABLE	FROM	EXECUTIONSERVICE?	99	
197. WHAT	IS	SYNCHRONIZATION	OF	THREADS?	...	99	
198. CAN	YOU	GIVE	AN	EXAMPLE	OF	A	SYNCHRONIZED	BLOCK?	...	100	
199. CAN	A	STATIC	METHOD	BE	SYNCHRONIZED?	..	100	
200. WHAT	IS	THE	USE	OF	JOIN	METHOD	IN	THREADS?	..	101	
201. DESCRIBE	A	FEW	OTHER	IMPORTANT	METHODS	IN	THREADS?	..	101	
202. WHAT	IS	A	DEADLOCK?	...	102	
203. WHAT	ARE	THE	IMPORTANT	METHODS	IN	JAVA	FOR	INTER-THREAD	COMMUNICATION?	102	
204. WHAT	IS	THE	USE	OF	WAIT	METHOD?	..	102	
205. WHAT	IS	THE	USE	OF	NOTIFY	METHOD?	...	102	
206. WHAT	IS	THE	USE	OF	NOTIFYALL	METHOD?	..	102	
207. CAN	YOU	WRITE	A	SYNCHRONIZED	PROGRAM	WITH	WAIT	AND	NOTIFY	METHODS?	102	

FUNCTIONAL	PROGRAMMING	-	LAMDBA	EXPRESSIONS	AND	STREAMS	...	104	
208. WHAT	IS	FUNCTIONAL	PROGRAMMING?	..	104	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 9	

	
209. CAN	YOU	GIVE	AN	EXAMPLE	OF	FUNCTIONAL	PROGRAMMING?	..	104	
210. WHAT	IS	A	STREAM?	..	104	
211. EXPLAIN	ABOUT	STREAMS	WITH	AN	EXAMPLE?	..	104	

WHAT	ARE	INTERMEDIATE	OPERATIONS	IN	STREAMS?	..	105	
212. WHAT	ARE	TERMINAL	OPERATIONS	IN	STREAMS?	...	106	
213. WHAT	ARE	METHOD	REFERENCES?	...	107	
214. WHAT	ARE	LAMBDA	EXPRESSIONS?	..	107	
215. CAN	YOU	GIVE	AN	EXAMPLE	OF	LAMBDA	EXPRESSION?	...	107	
216. CAN	YOU	EXPLAIN	THE	RELATIONSHIP	BETWEEN	LAMBDA	EXPRESSION	AND	FUNCTIONAL	INTERFACES?

	...	107	
217. WHAT	IS	A	PREDICATE?	..	108	
218. WHAT	IS	THE	FUNCTIONAL	INTERFACE	-	FUNCTION?	..	108	
219. WHAT	IS	A	CONSUMER?	...	108	
220. CAN	YOU	GIVE	EXAMPLES	OF	FUNCTIONAL	INTERFACES	WITH	MULTIPLE	ARGUMENTS?	108	

NEW	FEATURES	..	109	
221. WHAT	ARE	THE	NEW	FEATURES	IN	JAVA	5?	..	109	
222. WHAT	ARE	THE	NEW	FEATURES	IN	JAVA	6?	..	109	
223. WHAT	ARE	THE	NEW	FEATURES	IN	JAVA	7?	..	109	
224. WHAT	ARE	THE	NEW	FEATURES	IN	JAVA	8?	..	109	

	

10	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Java	Platform	

Why	is	Java	so	Popular?	
Two	main	reasons	for	popularity	of	Java	are	

1. Platform	Independence	
2. Object	Oriented	Language	

We	will	look	at	these	in	detail	in	later	sections.	

What	is	Platform	Independence?	

	

Platform	Independence	is	also	called	build	once,	run	anywhere.	Java	is	one	of	the	most	popular	platform	
independent	languages.	Once	we	compile	a	java	program	and	build	a	jar,	we	can	run	the	jar	(compiled	
java	program)	in	any	Operating	System	-	where	a	JVM	is	installed.	

Java	achieves	Platform	Independence	in	a	beautiful	way.	On	compiling	a	java	file	the	output	is	a	class	file	
-	which	contains	an	internal	java	representation	called	bytecode.	JVM	converts	bytecode	to	executable	

bytecode

bytecode

bytecode

bytecode

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 11	

	
instructions.	 The	 executable	 instructions	 are	 different	 in	 different	 operating	 systems.	 So,	 there	 are	
different	 JVM's	 for	 different	 operating	 systems.	 A	 JVM	 for	windows	 is	 different	 from	 a	 JVM	 for	mac.	
However,	 both	 the	 JVM's	 understand	 the	 bytecode	 and	 convert	 it	 to	 the	 executable	 code	 for	 the	
respective	operating	system.		

What	is	ByteCode?	
Java	bytecode	is	the	instruction	set	of	the	Java	virtual	machine.	Each	bytecode	is	composed	of	one,	or	in	
some	cases	two	bytes	that	represent	the	instruction	(opcode),	along	with	zero	or	more	bytes	for	passing	
parameters.	

Compare	JDK	vs	JVM	VS	JRE.	
	

	

1. JVM	
a. Virtual	machine	that	run	the	Java	bytecode.	
b. Makes	java	portable.	

2. JRE	
a. JVM	+	Libraries	+	Other	Components	(to	run	applets	and	other	java	applications)	

12	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

3. JDK	
a. JRE	+	Compilers	+	Debuggers	

What	are	the	important	differences	between	C++	and	Java?	
1. Java	is	platform	independent.	C++	is	not	platform	independent.	
2. Java	&	C++	are	both	NOT	pure	Object	Oriented	Languages.	However,	Java	is	more	purer	Object	

Oriented	 Language	 (except	 for	 primitive	 variables).	 In	 C++,	 one	 can	write	 structural	 programs	
without	using	objects.	

3. C++	has	pointers	(access	to	internal	memory).	Java	has	no	concept	called	pointers.	
4. In	C++,	programmer	has	 to	handle	memory	management.	A	programmer	has	 to	write	code	to	

remove	 an	 object	 from	memory.	 In	 Java,	 JVM	 takes	 care	 of	 removing	 objects	 from	memory	
using	a	process	called	Garbage	Collection.	

5. C++	supports	Multiple	Inheritance.	Java	does	not	support	Multiple	Inheritance.	

What	is	the	role	for	a	ClassLoader	in	Java?	
A	Java	program	is	made	up	of	a	number	of	custom	classes	(written	by	programmers	like	us)	and	core	
classes	(which	come	pre-packaged	with	Java).	When	a	program	is	executed,	JVM	needs	to	load	the	
content	of	all	the	needed	class.	JVM	uses	a	ClassLoader	to	find	the	classes.	

Three	Class	Loaders	are	shown	in	the	picture	

• System	Class	Loader	-	Loads	all	classes	from	CLASSPATH	
• Extension	Class	Loader	-	Loads	all	classes	from	extension	directory	
• Bootstrap	Class	Loader	-	Loads	all	the	Java	core	files	

	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 13	

	
When	JVM	needs	to	find	a	class,	it	starts	with	System	Class	Loader.	If	it	is	not	found,	it	checks	with	
Extension	Class	Loader.	If	it	not	found,	it	goes	to	the	Bootstrap	Class	Loader.	If	a	class	is	still	not	found,	a	
ClassNotFoundException	is	thrown.	

14	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

Wrapper	Classes	

What	are	wrapper	classes?	
A brief description is provided below.

A primitive wrapper class in the Java programming language is one of eight classes provided in the
java.lang package to provide object methods for the eight primitive types. All of the primitive wrapper
classes in Java are immutable.
	
Wrapper: Boolean,Byte,Character,Double,Float,Integer,Long,Short
Primitive: boolean,byte,char ,double, float, int , long,short

Why	do	we	need	Wrapper	Classes	in	Java?	
A wrapper class wraps (encloses) around a data type and gives it an object appearance.

Reasons why we need Wrapper Classes

• null is a possible value
• use it in a Collection
• Methods that support Object like creation from other types.. like String

◦ Integer	number2	=	new	Integer("55");//String	

What	are	the	different	ways	of	creating	Wrapper	Class	Instances?	
Two	ways	of	creating	Wrapper	Class	Instances	are	described	below.	

Using	a	Wrapper	Class	Constructor	

Integer	number	=	new	Integer(55);//int	
Integer	number2	=	new	Integer("55");//String	
	
Float	number3	=	new	Float(55.0);//double	argument	
Float	number4	=	new	Float(55.0f);//float	argument	
Float	number5	=	new	Float("55.0f");//String	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 15	

	
	
Character	c1	=	new	Character('C');//Only	char	constructor	
//Character	c2	=	new	Character(124);//COMPILER	ERROR	
	
Boolean	b	=	new	Boolean(true);	
	
//"true"	"True"	"tRUe"	-	all	String	Values	give	True	
//Anything	else	gives	false	
Boolean	b1	=	new	Boolean("true");//value	stored	-	true	
Boolean	b2	=	new	Boolean("True");//value	stored	-	true	
Boolean	b3	=	new	Boolean("False");//value	stored	-	false	
Boolean	b4	=	new	Boolean("SomeString");//value	stored	-	false	

valueOf		Static	Methods	
Provide another way of creating a Wrapper Object

Integer	hundred	=		
				Integer.valueOf("100");//100	is	stored	in	variable	
	
Integer	seven	=		
				Integer.valueOf("111",	2);//binary	111	is	converted	to	7	

What	are	differences	in	the	two	ways	of	creating	Wrapper	Classes?	
The	difference	is	that	using	the	Constructor	you	will	always	create	a	new	object,	while	using	valueOf()	
static	method,	it	may	return	you	a	cached	value	with-in	a	range.		

For	example	:	The	cached	values	for	long	are	between	[-128	to	127].	

We	should	prefer	static	valueOf	method,	because	it	may	save	you	some	memory.	To	understand	it	further,	
here	is	an	implementation	of	valueOf	method	in	the	Long	class	

 /**
 * Returns an {@code Integer} instance representing the specified
 * {@code int} value. If a new {@code Integer} instance is not
 * required, this method should generally be used in preference to
 * the constructor {@link #Integer(int)}, as this method is likely
 * to yield significantly better space and time performance by
 * caching frequently requested values.
 *
 * This method will always cache values in the range -128 to 127,
 * inclusive, and may cache other values outside of this range.
 *
 * @param i an {@code int} value.
 * @return an {@code Integer} instance representing {@code i}.
 * @since 1.5
 */
 public static Integer valueOf(int i) {
 if (i >= IntegerCache.low && i <= IntegerCache.high)
 return IntegerCache.cache[i + (-IntegerCache.low)];

16	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
 return new Integer(i);
 }
	

What	is	Auto	Boxing?	
Autoboxing	is	the	automatic	conversion	that	the	Java	compiler	makes	between	the	primitive	types	and	
their	corresponding	object	wrapper	classes.	For	example,	converting	an	int	to	an	Integer,	a	double	to	a	
Double,	and	so	on.	If	the	conversion	goes	the	other	way,	this	is	called	unboxing.	

Example	1	
Integer	nineC	=	9;	
	

Example	2	
Integer	ten	=	new	Integer(10);	
ten++;//allowed.	Java	does	had	work	behind	the	screen	for	us	
	

What	are	the	advantages	of	Auto	Boxing?	
Auto	Boxing	helps	in	saving	memory	by	reusing	already	created	Wrapper	objects.	Auto	Boxing	uses	the	
static	valueOf	methods.	However	wrapper	classes	created	using	new	are	not	reused.	

Two	wrapper	objects	created	using	new	are	not	same	object.	

Integer	nineA	=	new	Integer(9);	
Integer	nineB	=	new	Integer(9);	
System.out.println(nineA	==	nineB);//false	
System.out.println(nineA.equals(nineB));//true	
	
Two	wrapper	objects	created	using	boxing	are	same	object.	

Integer	nineC	=	9;	
Integer	nineD	=	9;	
System.out.println(nineC	==	nineD);//true	
System.out.println(nineC.equals(nineD));//true	

What	is	Casting?	
Casting is used when we want to convert on data type to another.
There are two types of Casting

• Implicit Casting
• Explicit Casting

What	is	Implicit	Casting?	
Implicit Casting is done by the compiler. Good examples of implicit casting are all the automatic widening
conversions i.e. storing smaller values in larger variable types.
int	value	=	100;	
long	number	=	value;	//Implicit	Casting	
float	f	=	100;	//Implicit	Casting		

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 17	

	
What	is	Explicit	Casting?	
Explicit Casting is done through code. Good examples of explicit casting are the narrowing conversions.
Storing larger values into smaller variable types;
long	number1	=	25678;	
int	number2	=	(int)number1;//Explicit	Casting	
//int	x	=	35.35;//COMPILER	ERROR	
int	x	=	(int)35.35;//Explicit	Casting	

Explicit casting would cause truncation of value if the value stored is greater than the size of the variable.
int	bigValue	=	280;	
byte	small	=	(byte)	bigValue;	
System.out.println(small);//output	24.	Only	8	bits	remain.	

18	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

Strings	

Are	all	String’s	immutable?	
Value	of	a	String	Object	once	created	cannot	be	modified.	Any	modification	on	a	String	object	creates	a	
new	String	object.	

String	str3	=	"value1";	
str3.concat("value2");	
System.out.println(str3);	//value1	
	
Note	that	the	value	of	str3	is	not	modified	in	the	above	example.		The	result	should	be	assigned	to	a	new	
reference	variable	(or	same	variable	can	be	reused).	All	wrapper	class	instances	are	immutable	too!	

String	concat	=	str3.concat("value2");	
System.out.println(concat);	//value1value2	

Where	are	string	values	stored	in	memory?	
The	location	where	the	string	values	are	stored	in	memory	depends	on	how	we	create	them.		

Approach	1	
In	the	example	below	we	are	directly	referencing	a	String	literal.		

String	str1	=	"value";		
	

This	value	will	be	stored	in	a	"String	constant	pool"	–	which	is	inside	the	Heap	memory.	If	compiler	finds	
a	String	literal,it	checks	if	it	exists	in	the	pool.	If	it	exists,	it	is	reused.	

String	str5	=	"value";		
In	above	example,	when	str5	is	created	-	the	existing	value	from	String	Constant	Pool	is	reused.	

Approach	2	
However,	if	new	operator	is	used	to	create	string	object,	the	new	object	is	created	on	the	heap.	There	
will	not	be	any	reuse	of	values.	

//String	Object	-	created	on	the	heap	
String	str2	=	new	String("value");	

Why	should	you	be	careful	about	String	Concatenation(+)	operator	in	Loops?	
Consider	the	code	below:	

String s3 = "Value1";
String s2 = "Value2";
for (int i = 0; i < 100000; ++i) {
 s3 = s3 + s2;
}	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 19	

	
	

How	many	objects	are	created	in	memory?	More	than	100000	Strings	are	created.	This	will	have	a	huge	
performance	impact.	

How	do	you	solve	above	problem?	
The	easiest	way	to	solve	above	problem	is	using	StringBuffer.	On	my	machine	StringBuffer	version	took	
0.5	seconds.	String	version	took	25	Seconds.	That’s	a	50	fold	increase	in	performance.	

StringBuffer s3 = new StringBuffer("Value1");
String s2 = "Value2";
for (int i = 0; i < 100000; ++i) {
 s3.append(s2);
}

	

What	are	differences	between	String	and	StringBuffer?	
• Objects	of	type	String	are	immutable.	StringBuffer	is	used	to	represent	values	that	can	be	

modified.	
• In	situations	where	values	are	modified	a	number	to	times,	StringBuffer	yields	significant	

performance	benefits.	
• Both	String	and	StringBuffer	are	thread-safe.	
• StringBuffer	is	implemented	by	using	synchronized	keyword	on	all	methods.	

What	are	differences	between	StringBuilder	and	StringBuffer?	
StringBuilder	is	not	thread	safe.	So,	it	performs	better	in	situations	where	thread	safety	is	not	required.	

Can	you	give	examples	of	different	utility	methods	in	String	class?	
String	class	defines	a	number	of	methods	to	get	information	about	the	string	content.	

String	str	=	"abcdefghijk";	

Get	information	from	String	
Following	methods	help	to	get	information	from	a	String.	
//char	charAt(int	paramInt)	
System.out.println(str.charAt(2));	//prints	a	char	-	c	
System.out.println("ABCDEFGH".length());//8	
System.out.println("abcdefghij".toString());	//abcdefghij	
System.out.println("ABC".equalsIgnoreCase("abc"));//true	
	
//Get	All	characters	from	index	paramInt	
//String	substring(int	paramInt)	

20	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
System.out.println("abcdefghij".substring(3));	//cdefghij	
	
//All	characters	from	index	3	to	6	
System.out.println("abcdefghij".substring(3,7));	//defg	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 21	

	

Object	Oriented	Programming	Basics	

What	is	a	Class?		
Let’s	look	at	an	example:	

package	com.rithus;	
	
public	class	CricketScorer	{	
				//Instance	Variables	-	constitute	the	state	of	an	object	
				private	int	score;	
	
				//Behavior	-	all	the	methods	that	are	part	of	the	class	
				//An	object	of	this	type	has	behavior	based	on	the		
				//methods	four,	six	and	getScore	
				public	void	four(){	
								score	=	score	+	4;	
				}	
					
				public	void	six(){	
								score	=	score	+	6;	
				}	
					
				public	int	getScore()	{	
								return	score;	
				}	
					
				public	static	void	main(String[]	args)	{	
								CricketScorer	scorer	=	new	CricketScorer();	
								scorer.six();	
								//State	of	scorer	is	(score	=>	6)	
								scorer.four();	
								//State	of	scorer	is	(score	=>	10)	
								System.out.println(scorer.getScore());	
				}	
}	

Class	
A class is a Template. In above example, Class CricketScorer is the template for creating multiple
objects. A class defines state and behavior that an object can exhibit.

What	is	an	Object?	
An instance of a class. In the above example, we create an object using new	CricketScorer(). The
reference of the created object is stored in scorer variable. We can create multiple objects of the same
class.

What	is	state	of	an	Object?	
Values assigned to instance variables of an object. Consider following code snippets from the above
example. The value in score variable is initially 0. It changes to 6 and then 10. State of an object might
change with time.

22	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
								scorer.six();	
								//State	of	scorer	is	(score	=>	6)	
	
								scorer.four();	
								//State	of	scorer	is	(score	=>	10)	

What	is	behavior	of	an	Object?	
Methods supported by an object. Above example the behavior supported is six(), four() and getScore().

What	is	the	super	class	of	every	class	in	Java?	
Every class in java is a sub class of the class Object. When we create a class we inherit all the methods
and properties of Object class. Let’s look at a simple example:
	
String	str	=	"Testing";	
System.out.println(str.toString());	
System.out.println(str.hashCode());	
System.out.println(str.clone());	
	
if(str	instanceof	Object){	
				System.out.println("I	extend	Object");//Will	be	printed	
}	

In the above example, toString, hashCode and clone methods for String class are inherited from Object
class and overridden.

Explain	about	toString	method	?	
toString method is used to print the content of an Object. If the toString method is not overridden in a
class, the default toString method from Object class is invoked. This would print some hashcode as
shown in the example below. However, if toString method is overridden, the content returned by the
toString method is printed.

Consider the class given below:

class	Animal	{	
	
				public	Animal(String	name,	String	type)	{	
								this.name	=	name;	
								this.type	=	type;	
				}	
	
				String	name;	
				String	type;	
	
}	

Run this piece of code:

Animal	animal	=	new	Animal("Tommy",	"Dog");	
System.out.println(animal);//com.rithus.Animal@f7e6a96	
	
Output does NOT show the content of animal (what name? and what type?). To show the content of the
animal object, we can override the default implementation of toString method provided by Object class.

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 23	

	
Adding	toString	to	Animal	class	
class	Animal	{	
					
				public	Animal(String	name,	String	type)	{	
								this.name	=	name;	
								this.type	=	type;	
				}	
	
				String	name;	
				String	type;	
	
				public	String	toString()	{	
								return	"Animal	[name="	+	name	+	",	type="	+	type	
																+	"]";	
				}	
	
}	

Run this piece of code:

Animal	animal	=	new	Animal("Tommy","Dog");	
System.out.println(animal);//Animal	[name=Tommy,	type=Dog]	

Output now shows the content of the animal object.

What	is	the	use	of	equals	method	in	Java?	
Equals method is used when we compare two objects. Default implementation of equals method is
defined in Object class. The implementation is similar to == operator. Two object references are equal
only if they are pointing to the same object.

We need to override equals method, if we would want to compare the contents of an object.

Consider the example Client class provided below.

class	Client	{	
				private	int	id;	
	
				public	Client(int	id)	{	
								this.id	=	id;	
				}	
}	

== comparison operator checks if the object references are pointing to the same object. It does NOT look
at the content of the object.
	
Client	client1	=	new	Client(25);	
Client	client2	=	new	Client(25);	
Client	client3	=	client1;	
	
//client1	and	client2	are	pointing	to	different	client	objects.	
System.out.println(client1	==	client2);//false	

24	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
	
//client3	and	client1	refer	to	the	same	client	objects.	
System.out.println(client1	==	client3);//true	
	
//similar	output	to	==	
System.out.println(client1.equals(client2));//false	
System.out.println(client1.equals(client3));//true	

We can override the equals method in the Client class to check the content of the objects. Consider the
example below: The implementation of equals method checks if the id's of both objects are equal. If so, it
returns true. Note that this is a basic implementation of equals and more needs to be done to make it fool-
proof.

class	Client	{	
				private	int	id;	
	
				public	Client(int	id)	{	
								this.id	=	id;	
				}	
	
				@Override	
				public	boolean	equals(Object	obj)	{	
								Client	other	=	(Client)	obj;	
								if	(id	!=	other.id)	
												return	false;	
								return	true;	
				}	
}	

Consider running the code below:
Client	client1	=	new	Client(25);	
Client	client2	=	new	Client(25);	
Client	client3	=	client1;	
	
//both	id's	are	25	
System.out.println(client1.equals(client2));//true	
	
//both	id's	are	25	
System.out.println(client1.equals(client3));//true	

Above code compares the values (id's) of the objects.

What	 are	 the	 important	 things	 to	 consider	 when	 implementing	 equals	
method?		
Any equals implementation should satisfy these properties:

1. Reflexive. For any reference value x, x.equals(x) returns true.
2. Symmetric. For any reference values x and y, x.equals(y) should return true if and only if

y.equals(x) returns true.
3. Transitive. For any reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns

true, then x.equals(z) must return true.
4. Consistent. For any reference values x and y, multiple invocations of x.equals(y) consistently

return true or consistently return false, if no information used in equals is modified.
5. For any non-null reference value x, x.equals(null) should return false.

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 25	

	

Our earlier implementation of equals method will not satisfy condition 5. It would throw an exception if an
object of different class (other than Client) is used for comparison.

Let's now provide an implementation of equals which satisfy these properties:

//Client class
@Override	
public	boolean	equals(Object	obj)	{	
				if	(this	==	obj)	
								return	true;	
				if	(obj	==	null)	
								return	false;	
				if	(getClass()	!=	obj.getClass())	
								return	false;	
				Client	other	=	(Client)	obj;	
				if	(id	!=	other.id)	
								return	false;	
				return	true;	
}	

What	is	the	hashCode	method	used	for	in	Java?	
HashCode's are used in hashing to decide which group (or bucket) an object should be placed into. A
group of object's might share the same hashcode.

The implementation of hash code decides effectiveness of Hashing. A good hashing function evenly
distributes object's into different groups (or buckets).

A good hashCode	method	should	have	the	following	properties	

• If obj1.equals(obj2) is true, then obj1.hashCode() should be equal to obj2.hashCode()
• obj.hashCode() should return the same value when run multiple times, if values of obj used in

equals() have not changed.
• If obj1.equals(obj2) is false, it is NOT required that obj1.hashCode() is not equal to

obj2.hashCode(). Two unequal objects MIGHT have the same hashCode.

A sample hashcode implementation of Client class which meets above constraints is given below:

//Client class
@Override	
public	int	hashCode()	{	
				final	int	prime	=	31;	
				int	result	=	1;	
				result	=	prime	*	result	+	id;	
				return	result;	
}	

Explain	inheritance	with	Examples.	
Consider the example class Actor below:
	
public	class	Actor	{	
				public	void	act(){	
								System.out.println("Act");	
				};	

26	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
}	

We can extend this class by using the keyword extends. Hero class extends Actor.
	
//IS-A	relationship.	Hero	is-a	Actor	
public	class	Hero	extends	Actor	{	
				public	void	fight(){	
								System.out.println("fight");	
				};	
}	

We can now create an instance of Hero class. Since Hero extends Animal, the methods defined in Animal
are also available through an instance of Hero class. In the example below, we invoke the act method on
hero object.

Hero	hero	=	new	Hero();	
//act	method	inherited	from	Actor	
hero.act();//Act	
hero.fight();//fight	

Let’s look at another class extending Actor class - Comedian.
//IS-A	relationship.	Comedian	is-a	Actor	
public	class	Comedian	extends	Actor	{	
				public	void	performComedy(){	
								System.out.println("Comedy");	
				};	
}	

We can now reuse Actor methods from an instance of Comedian class as well.

Comedian	comedian	=	new	Comedian();	
//act	method	inherited	from	Actor	
comedian.act();//Act	
comedian.performComedy();//Comedy	

What	is	Method	Overloading?	
A method having the same name as another method (in same class or a sub class) but having different
parameters is called an Overloaded Method.

Example	1	
doIt	method	is	overloaded	in	the	below	example:	

class	Foo{	
				public	void	doIt(int	number){	
									
				}	
				public	void	doIt(String	string){	
									
				}	
}	

Example	2	
Overloading	can	also	be	done	from	a	sub	class.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 27	

	
class	Bar	extends	Foo{	
				public	void	doIt(float	number){	
									
				}	
}	

Java	Example	

• Constructors	
o public	HashMap(int	initialCapacity,	float	loadFactor)	
o public	HashMap()	{	
o public	HashMap(int	initialCapacity)	

• Methods	
o public	boolean	addAll(Collection<?	extends	E>	c)	
o public	boolean	addAll(int	index,	Collection<?	extends	E>	c)	

What	is	Method	Overriding?	
Creating a Sub Class Method with same signature as that of a method in SuperClass is called Method
Overriding.
	

Let’s	define	an	Animal	class	with	a	method	shout.	

public	class	Animal	{	
				public	String	bark()	{	
								return	"Don't	Know!";	
				}	
}	
	
Let’s	create	a	sub	class	of	Animal	–	Cat		-	overriding	the	existing	shout	method	in	Animal.	

class	Cat	extends	Animal	{	
				public	String	bark()	{	
								return	"Meow	Meow";	
				}	
}	

bark method in Cat class is overriding the bark method in Animal class.

Java Example : HashMap public int size() overrides AbstractMap public int size()
	

Can	super	class	reference	variable	can	hold	an	object	of	sub	class?	
Yes. Look at the example below:
	
Actor reference variables actor1, actor2 hold the reference of objects of sub classes of Animal, Comedian
and Hero.

Since object is super class of all classes, an Object reference variable can also hold an instance of any
class.

28	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
	
//Object	is	super	class	of	all	java	classes	
Object	object	=	new	Hero();		
	
public	class	Actor	{	
				public	void	act(){	
								System.out.println("Act");	
				};	
}	
	
//IS-A	relationship.	Hero	is-a	Actor	
public	class	Hero	extends	Actor	{	
				public	void	fight(){	
								System.out.println("fight");	
				};	
}	
	
//IS-A	relationship.	Comedian	is-a	Actor	
public	class	Comedian	extends	Actor	{	
				public	void	performComedy(){	
								System.out.println("Comedy");	
				};	
}	
	
Actor	actor1	=	new	Comedian();	
Actor	actor2	=	new	Hero();	

Is	Multiple	Inheritance	allowed	in	Java?	

Multiple Inheritance results in a number of complexities. Java does not support Multiple Inheritance.
	
class	Dog	extends	Animal,	Pet	{	//COMPILER	ERROR	
}	

However, we can create an Inheritance Chain
class	Pet	extends	Animal	{	
}	
	
class	Dog	extends	Pet	{	
}	

What	is	an	Interface?	
• An interface defines a contract for responsibilities (methods) of a class.
• An interface is a contract: the guy writing the interface says, "hey, I accept things looking that

way"
• Interface represents common actions between Multiple Classes.
• Example in Java api : Map interface, Collection interface.

How	do	you	define	an	Interface?	
An	 interface	 is	 declared	 by	 using	 the	 keyword	 interface.	 Look	 at	 the	 example	 below:	 Flyable	 is	 an	
interface.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 29	

	
//public	abstract	are	not	necessary	
public	abstract	interface	Flyable	{	
				//public	abstract	are	not	necessary	
				public	abstract	void	fly();	
}	

How	do	you	implement	an	interface?
We can define a class implementing the interface by using the implements keyword. Let us look at a
couple of examples:

Example	1	
Class	Aeroplane	implements	Flyable	and	implements	the	abstract	method	fly().	

public	class	Aeroplane	implements	Flyable{	
				@Override	
				public	void	fly()	{	
								System.out.println("Aeroplane	is	flying");	
				}	
}	

Example	2	
public	class	Bird	implements	Flyable{	
				@Override	
				public	void	fly()	{	
								System.out.println("Bird	is	flying");	
				}	
}	

Can	you	explain	a	few	tricky	things	about	interfaces?	
Variables	 in	 an	 interface	 are	 always	 public,	 static,	 final.	 Variables	 in	 an	 interface	 cannot	 be	 declared	
private.	

interface	ExampleInterface1	{	
				//By	default	-	public	static	final.	No	other	modifier	allowed	
				//value1,value2,value3,value4	all	are	-	public	static	final	
				int	value1	=	10;	
				public	int	value2	=	15;	
				public	static	int	value3	=	20;	
				public	static	final	int	value4	=	25;	
				//private	int	value5	=	10;//COMPILER	ERROR	
}	

Interface	methods	are	by	default	public	and	abstract.	Before	 Java	8,	A	concrete	method	(fully	defined	
method)	cannot	be	created	in	an	interface.	Consider	the	example	below:	

 interface ExampleInterface1 {
 //By default - public abstract. No other modifier allowed
 void method1();//method1 is public and abstract
 //private void method6();//COMPILER ERROR!

 //This method, uncommented, would have given COMPILER ERROR!

30	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
 //in Java 7. Allowed from Java 8.
 default void method5() {
 System.out.println("Method5");
 }
 }

Can	you	extend	an	interface?	
An interface can extend another interface. Consider the example below:
	
interface	SubInterface1	extends	ExampleInterface1{	
				void	method3();	
}	

Class	 implementing	 SubInterface1	 should	 implement	 both	 methods	 -	 method3	 and	 method1(from	
ExampleInterface1)	

An interface cannot extend a class.

/*	//COMPILE	ERROR	IF	UnCommented	
			//Interface	cannot	extend	a	Class	
interface	SubInterface2	extends	Integer{	
				void	method3();	
}	
*/	

Can	a	class	extend	multiple	interfaces?	

A	class	can	implement	multiple	interfaces.	It	should	implement	all	the	method	declared	in	all	Interfaces	
being	implemented.	

An	example	of	a	class	in	the	JDK	that	implements	several	interfaces	is	HashMap,	which	implements	the	
interfaces	Serializable,	Cloneable,	and	Map.	By	reading	this	list	of	interfaces,	you	can	infer	that	an	
instance	of	HashMap	(regardless	of	the	developer	or	company	who	implemented	the	class)	can	be	
cloned,	is	serializable	(which	means	that	it	can	be	converted	into	a	byte	stream;	see	the	section	
Serializable	Objects),	and	has	the	functionality	of	a	map.	

interface	ExampleInterface2	{	
				void	method2();	
}	
	
class	SampleImpl	implements	ExampleInterface1,ExampleInterface2{	
				/*	A	class	should	implement	all	the	methods	in	an	interface.	
							If	either	of	method1	or	method2	is	commented,	it	would		
							result	in	compilation	error.		
					*/	
				public	void	method2()	{	
								System.out.println("Sample	Implementation	for	Method2");	
				}	
	
				public	void	method1()	{	
								System.out.println("Sample	Implementation	for	Method1");	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 31	

	
				}	
					
}	
	

What	is	an	Abstract	Class?	
An	abstract	class	is	a	class	that	cannot	be	instantiated,	but	must	be	inherited	from.	An	abstract	class	may	
be	 fully	 implemented,	 but	 is	 more	 usually	 partially	 implemented	 or	 not	 implemented	 at	 all,	 thereby	
encapsulating	common	functionality	for	inherited	classes.	
	
public	abstract	class	AbstractClassExample	{	
				public	static	void	main(String[]	args)	{	
								//An	abstract	class	cannot	be	instantiated	
								//Below	line	gives	compilation	error	if	uncommented	
								//AbstractClassExample	ex	=	new	AbstractClassExample();	
				}	
}	

When	do	you	use	an	Abstract	Class?	
If	 you	 want	 to	 provide	 common,	 implemented	 functionality	 among	 all	 implementations	 of	 your	
component,	use	an	abstract	class.	Abstract	classes	allow	you	to	partially	implement	your	class.	

• An	 example	 of	 an	 abstract	 class	 in	 the	 JDK	 is	 AbstractMap,	 which	 is	 part	 of	 the	 Collections	
Framework.	 Its	subclasses	 (which	 include	HashMap,	TreeMap,	and	ConcurrentHashMap)	share	
many	methods	(including	get,	put,	 isEmpty,	containsKey,	and	containsValue)	that	AbstractMap	
defines.	

o example	abstract	method	:	public	abstract	Set>	entrySet();	
	

• Another	Example	-	Spring	AbstractController	

In	 code	 below	 “AbstractClassExample	 ex	 =	 new	 AbstractClassExample();”	 gives	 a	 compilation	 error	
because	AbstractClassExample	is	declared	with	keyword	abstract.		

Example	in	Java	:	HashMap	&	TreeMap	extend	AbstractMap.	

How	do	you	define	an	abstract	method?	
An Abstract method does not contain body. An abstract method does not have any implementation. The
implementation of an abstract method should be provided in an over-riding method in a sub class.
				//Abstract	Class	can	contain	0	or	more	abstract	methods	
				//Abstract	method	does	not	have	a	body	
				abstract	void	abstractMethod1();	
				abstract	void	abstractMethod2();	
	
Abstract	method	can	be	declared	only	in	Abstract	Class.	In	the	example	below,	abstractMethod()	gives	a	
compiler	error	because	NormalClass	is	not	abstract.	

class	NormalClass{	
				abstract	void	abstractMethod();//COMPILER	ERROR	
}	

32	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Compare	Abstract	Class	vs	Interface?	

Real Difference - Apple vs Orange

Syntactical Differences

• Methods and members of an abstract class can have any visibility. All methods of an interface
must be public.

• A concrete child class of an Abstract Class must define all the abstract methods. An Abstract
child class can have abstract methods. An interface extending another interface need not provide
default implementation for methods inherited from the parent interface.

• A child class can only extend a single class. An interface can extend multiple interfaces. A class
can implement multiple interfaces.

• A child class can define abstract methods with the same or less restrictive visibility, whereas a
class implementing an interface must define all interface methods as public	

What	is	a	Constructor?	
Constructoris invoked whenever we create an instance(object) of a Class. We cannot create an object
without a constructor. 	

Constructor has the same name as the class and no return type. It can accept any number of parameters.

class	Animal	{	
				String	name;	
	
				//	This	is	called	a	one	argument	constructor.	
				public	Animal(String	name)	{	
								this.name	=	name;	
				}	
	
				public	static	void	main(String[]	args)	{	
								//	Since	we	provided	a	constructor,	compiler	does	not	
								//	provide	a	default	constructor.	
								//	Animal	animal	=	new	Animal();//COMPILER	ERROR!	
	
								//	The	only	way	we	can	create	Animal1	object	is	by	using	
								Animal	animal	=	new	Animal("Tommy");	
				}	
}	
	

What	is	a	Default	Constructor?	
Default Constructor is the constructor that is provided by the compiler. It has no arguments. In the
example below, there are no Constructors defined in the Animal class. Compiler provides us with a
default constructor, which helps us create an instance of animal class.
	
public	class	Animal	{	
				String	name;	
	
				public	static	void	main(String[]	args)	{	
								//	Compiler	provides	this	class	with	a	default	no-argument	constructor.	
								//	This	allows	us	to	create	an	instance	of	Animal	class.	
								Animal	animal	=	new	Animal();	
				}	
}	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 33	

	
Will	this	code	compile?	
class	Animal	{	
				String	name;	
	
				public	Animal()	{	
								this.name	=	"Default	Name";	
				}	
	
				//	This	is	called	a	one	argument	constructor.	
				public	Animal(String	name)	{	
								this.name	=	name;	
				}	
	
				public	static	void	main(String[]	args)	{	

Animal	animal	=	new	Animal();	
				}	
}	
	

Answer	is	no.	Since	we	provided	a	constructor,	compiler	does	not	provide	a	default	constructor	

How	do	you	call	a	Super	Class	Constructor	from	a	Constructor?
A constructor can call the constructor of a super class using the super() method call. Only constraint is
that it should be the first statement i

Both example constructors below can replaces the no argument "public Animal() " constructor in Example
3.

public	Animal()	{	
				super();	
				this.name	=	"Default	Name";	
}	
	

Will	this	code	Compile?	
public	Animal()	{	
				this.name	=	"Default	Name";	
				super();	
}	
	
Answer	is	NO.	super	should	be	always	called	on	the	first	line	of	the	constructor.	

What	is	the	use	of	this()?	
Another	constructor	in	the	same	class	can	be	invoked	from	a	constructor,	using	this({parameters})	
method	call.	

public	Animal()	{	
				this("Default	Name");	
}	
	
public	Animal(String	name)	{	

34	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
				this.name	=	name;	
}	
	

Can	a	constructor	be	called	directly	from	a	method?		
A constructor cannot be explicitly called from any method except another constructor.
class	Animal	{	
				String	name;	
	
				public	Animal()	{	
				}	
	
				public	method()	{	
								Animal();//	Compiler	error	
				}	
}	

Is	a	super	class	constructor	called	even	when	there	 is	no	explicit	call	 from	a	
sub	class	constructor?
If a super class constructor is not explicitly called from a sub class constructor, super class (no argument)
constructor is automatically invoked (as first line) from a sub class constructor.

Consider the example below:

class	Animal	{	
				public	Animal()	{	
								System.out.println("Animal	Constructor");	
				}	
}	
	
class	Dog	extends	Animal	{	
				public	Dog()	{	
								System.out.println("Dog	Constructor");	
				}	
}	
	
class	Labrador	extends	Dog	{	
				public	Labrador()	{	
								System.out.println("Labrador	Constructor");	
				}	
}	
	
public	class	ConstructorExamples	{	
				public	static	void	main(String[]	args)	{	
								Labrador	labrador	=	new	Labrador();	
				}	
}	

Program	Output	
Animal Constructor
Dog Constructor
Labrador Constructor

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 35	

	
Advanced	Object	Oriented	Concepts	

What	is	Polymorphism?	
Polymorphism	is	defined	as	“Same	Code”	giving	“Different	Behavior”.	Let’s	look	at	an	example.		

Let’s	define	an	Animal	class	with	a	method	shout.	

public	class	Animal	{	
				public	String	shout()	{	
								return	"Don't	Know!";	
				}	
}	
	
Let’s	create	two	new	sub	classes	of	Animal	overriding	the	existing	shout	method	in	Animal.	

class	Cat	extends	Animal	{	
				public	String	shout()	{	
								return	"Meow	Meow";	
				}	
}	
	
class	Dog	extends	Animal	{	
				public	String	shout()	{	
								return	"BOW	BOW";	
				}	
	
				public	void	run(){	
									
				}	
}	
	
Look	at	the	code	below.	An	instance	of	Animal	class	is	created.	shout	method	is	called.		

Animal	animal1	=	new	Animal();									
System.out.println(
								animal1.shout());	//Don't	Know!	
	
Look	at	 the	 code	below.	An	 instance	of	Dog	 class	 is	 created	and	 store	 in	 a	 reference	variable	of	 type	
Animal.	

Animal	animal2	=	new	Dog();	
	
//Reference	variable	type	=>	Animal	
//Object	referred	to	=>	Dog	
//Dog's	bark	method	is	called.	
System.out.println(
								animal2.shout());	//BOW	BOW	
	
When	shout	method	is	called	on	animal2,	 it	 invokes	the	shout	method	in	Dog	class	(type	of	the	object	
pointed	to	by	reference	variable	animal2).	

36	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Even	though	dog	has	a	method	run,	it	cannot	be	invoked	using	super	class	reference	variable.	

//animal2.run();//COMPILE	ERROR	

What	is	the	use	of	instanceof	Operator	in	Java?	

instanceof operator checks if an object is of a particular type. Let us consider the following class and
interface declarations:
class	SuperClass	{	
};	
	
class	SubClass	extends	SuperClass	{	
};	
	
interface	Interface	{	
};	
	
class	SuperClassImplementingInteface	implements	Interface	{	
};	
	
class	SubClass2	extends	SuperClassImplementingInteface	{	
};	
	
class	SomeOtherClass	{	
};	
	

Let’s	consider	the	code	below.		We	create	a	few	instances	of	the	classes	declared	above.	

SubClass	subClass	=	new	SubClass();	
Object	subClassObj	=	new	SubClass();	
	
SubClass2	subClass2	=	new	SubClass2();	
SomeOtherClass	someOtherClass	=	new	SomeOtherClass();	
	
Let’s	now	run	instanceof	operator	on	the	different	instances	created	earlier.	

System.out.println(subClass	instanceof	SubClass);//true	
System.out.println(subClass	instanceof	SuperClass);//true	
System.out.println(subClassObj	instanceof	SuperClass);//true	
	
System.out.println(subClass2		
								instanceof	SuperClassImplementingInteface);//true	
	
instanceof	can	be	used	with	interfaces	as	well.	Since	Super	Class	implements	the	interface,	below	code	
prints	true.	

System.out.println(subClass2		
								instanceof	Interface);//true	
	
If	the	type	compared	is	unrelated	to	the	object,	a	compilation	error	occurs.	

//System.out.println(subClass		

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 37	

	
//												instanceof	SomeOtherClass);//Compiler	Error	
	
Object	referred	by	subClassObj(SubClass)-	NOT	of	type	SomeOtherClass	

System.out.println(subClassObj	instanceof	SomeOtherClass);//false	

What	is	Coupling?	
Coupling is a measure of how much a class is dependent on other classes. There should minimal
dependencies between classes. So, we should always aim for low coupling between classes.

Coupling	Example	Problem	
Consider	the	example	below:	

class	ShoppingCartEntry	{	
				public	float	price;	
				public	int	quantity;	
}	
	
class	ShoppingCart	{	
				public	ShoppingCartEntry[]	items;	
}	
	
class	Order	{	
				private	ShoppingCart	cart;	
				private	float	salesTax;	
	
				public	Order(ShoppingCart	cart,	float	salesTax)	{	
								this.cart	=	cart;	
								this.salesTax	=	salesTax;	
				}	
	
				//	This	method	know	the	internal	details	of	ShoppingCartEntry	and	
				//	ShoppingCart	classes.	If	there	is	any	change	in	any	of	those	
				//	classes,	this	method	also	needs	to	change.	
				public	float	orderTotalPrice()	{	
								float	cartTotalPrice	=	0;	
								for	(int	i	=	0;	i	<	cart.items.length;	i++)	{	
												cartTotalPrice	+=	cart.items[i].price	
																				*	cart.items[i].quantity;	
								}	
								cartTotalPrice	+=	cartTotalPrice	*	salesTax;	
								return	cartTotalPrice;	
				}	
}	

Method	 orderTotalPrice	 in	 Order	 class	 is	 coupled	 heavily	 with	 ShoppingCartEntry	 and	
ShoppingCart	classes.		It	uses	different	properties	(items,	price,	quantity)	from	these	classes.	If	any	of	
these	properties	change,	orderTotalPrice	will	also	change.	This	is	not	good	for	Maintenance.		

Solution	

38	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Consider a better implementation with lesser coupling between classes below: In this implementation,
changes in ShoppingCartEntry or CartContents might not affect Order class at all.

class	ShoppingCartEntry	
{	
				float	price;	
				int	quantity;	
	
				public	float	getTotalPrice()	
				{	
								return	price	*	quantity;	
				}	
}	
	
class	CartContents	
{	
				ShoppingCartEntry[]	items;	
	
				public	float	getTotalPrice()	
				{	
								float	totalPrice	=	0;	
								for	(ShoppingCartEntry	item:items)	
								{	
												totalPrice	+=	item.getTotalPrice();	
								}	
								return	totalPrice;	
				}	
}	
	
class	Order	
{	
				private	CartContents	cart;	
				private	float	salesTax;	
	
				public	Order(CartContents	cart,	float	salesTax)	
				{	
								this.cart	=	cart;	
								this.salesTax	=	salesTax;	
				}	
	
				public	float	totalPrice()	
				{	
								return	cart.getTotalPrice()	*	(1.0f	+	salesTax);	
				}	
}	

What	is	Cohesion?	
Cohesion	is	a	measure	of	how	related	the	responsibilities	of	a	class	are.		A	class	must	be	highly	cohesive	
i.e.	its	responsibilities	(methods)	should	be	highly	related	to	one	another.	

Example	Problem	
Example	 class	 below	 is	 downloading	 from	 internet,	 parsing	 data	 and	 storing	 data	 to	 database.	 The	
responsibilities	of	this	class	are	not	really	related.	This	is	not	cohesive	class.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 39	

	
class	DownloadAndStore{	
				void	downloadFromInternet(){	
				}	
					
				void	parseData(){	
				}	
					
				void	storeIntoDatabase(){	
				}	
					
				void	doEverything(){	
								downloadFromInternet();	
								parseData();	
								storeIntoDatabase();	
				}	
}	

Solution
This is a better way of approaching the problem. Different classes have their own responsibilities.

class	InternetDownloader	{	
				public	void	downloadFromInternet()	{	
				}	
}	
	
class	DataParser	{	
				public	void	parseData()	{	
				}	
}	
	
class	DatabaseStorer	{	
				public	void	storeIntoDatabase()	{	
				}	
}	
	
class	DownloadAndStore	{	
				void	doEverything()	{	
								new	InternetDownloader().downloadFromInternet();	
								new	DataParser().parseData();	
								new	DatabaseStorer().storeIntoDatabase();	
				}	
}	

What	is	Encapsulation?	
Encapsulation is “hiding the implementation of a Class behind a well defined interface”. Encapsulation
helps us to change implementation of a class without breaking other code.

Approach	1	
In	this	approach	we	create	a	public	variable	score.	The	main	method	directly	accesses	the	score	variable,	
updates	it.	

public	class	CricketScorer	{	
				public	int	score;	

40	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
}	
	
Let’s	use	the	CricketScorer	class.	
public	static	void	main(String[]	args)	{	

CricketScorer	scorer	=	new	CricketScorer();	
scorer.score	=	scorer.score	+	4;	

}	

Approach	2	
In	this	approach,	we	make	score	as	private	and	access	value	through	get	and	set	methods.	However,	the	
logic	of	adding	4	to	the	score	is	performed	in	the	main	method.	

public	class	CricketScorer	{	
				private	int	score;	
	
				public	int	getScore()	{	
								return	score;	
				}	
	
				public	void	setScore(int	score)	{	
								this.score	=	score;	
				}	
}	
	
Let’s	use	the	CricketScorer	class.	
	
public	static	void	main(String[]	args)	{	

CricketScorer	scorer	=	new	CricketScorer();	
	

int	score	=	scorer.getScore();	
scorer.setScore(score	+	4);	

}	

Approach	3	
In	this	approach	-	For	better	encapsulation,	the	 logic	of	doing	the	four	operation	also	 is	moved	to	the	
CricketScorer	class.	

public	class	CricketScorer	{	
				private	int	score;	
					
				public	void	four()	{	
								score	+=	4;	
				}	
	
}	
	
Let’s	use	the	CricketScorer	class.	
public	static	void	main(String[]	args)	{	

CricketScorer	scorer	=	new	CricketScorer();	
scorer.four();	

}	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 41	

	
Description	
In	terms	of	encapsulation	Approach	3	>	Approach	2	>	Approach	1.	In	Approach	3,	the	user	of	scorer	class	
does	not	even	know	that	there	is	a	variable	called	score.	Implementation	of	Scorer	can	change	without	
changing	other	classes	using	Scorer.	

What	is	an	Inner	Class?	
Inner	Classes	are	classes	which	are	declared	inside	other	classes.	Consider	the	following	example:	

class	OuterClass	{	
	
				public	class	InnerClass	{	
				}	
	
				public	static	class	StaticNestedClass	{	
				}	
	
}	

What	is	a	Static	Inner	Class?	
A	class	declared	directly	 inside	another	class	and	declared	as	static.	 In	the	example	above,	class	name	
StaticNestedClass	is	a	static	inner	class.		

Can	you	create	an	inner	class	inside	a	method?	
Yes.	 An	 inner	 class	 can	 be	 declared	 directly	 inside	 a	 method.	 In	 the	 example	 below,	 class	 name	
MethodLocalInnerClass	is	a	method	inner	class.		

class	OuterClass	{	
	
				public	void	exampleMethod()	{	
								class	MethodLocalInnerClass	{	
								};	
				}	
	
}	

What	is	an	Anonymous	Class?	
Anonymous	Class	does	not	have	a	name.	Below	examples	shows	various	ways	to	create	Anonymous	
classes.	

class Animal {
 void bark() {
 System.out.println("Animal Bark");
 }
};

public class AnonymousClass {

 private static String[] reverseSort(String[] array) {

42	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

 Comparator<String> reverseComparator = new Comparator<String>() {
 /* Anonymous Class */
 @Override
 public int compare(String string1,
 String string2) {
 return string2.compareTo(string1);
 }

 };

 Arrays.sort(array, reverseComparator);

 return array;
 }

 public static void main(String[] args) {

 String[] array = { "Apple", "Cat", "Boy" };

 System.out.println(Arrays
 .toString(reverseSort(array)));//[Cat, Boy, Apple]

 /* Second Anonymous Class - SubClass of Animal*/
 Animal animal = new Animal() {
 void bark() {
 System.out.println("Subclass bark");
 }
 };

 animal.bark();//Subclass bark

 }

}	

	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 43	

	

Modifiers	

What	is	default	class	modifier?	
• A class is called a Default Class is when there is no access modifier specified on a class.
• Default classes are visible inside the same package only.
• Default access is also called Package access.

Example	
package	com.rithus.classmodifiers.defaultaccess.a;	
	
/*	No	public	before	class.	So	this	class	has	default	access*/	
class	DefaultAccessClass	{	
//Default	access	is	also	called	package	access					
}	

Another	Class	in	Same	Package:	Has	access	to	default	class	
package	com.rithus.classmodifiers.defaultaccess.a;	
	
public	class	AnotherClassInSamePackage	{	
				//DefaultAccessClass	and	AnotherClassInSamePackage		
				//are	in	same	package.	
				//So,	DefaultAccessClass	is	visible.	
				//An	instance	of	the	class	can	be	created.					
				DefaultAccessClass	defaultAccess;	
}	

Class	in	Different	Package:	NO	access	to	default	class	
package	com.rithus.classmodifiers.defaultaccess.b;	
	
public	class	ClassInDifferentPackage	{	
				//Class	DefaultAccessClass	and	Class	ClassInDifferentPackage	
				//are	in	different	packages	(*.a	and	*.b)	
				//So,	DefaultAccessClass	is	not	visible	to	ClassInDifferentPackage	
					
				//Below	line	of	code	will	cause	compilation	error	if	uncommented	
				//DefaultAccessClass	defaultAccess;	//COMPILE	ERROR!!					
}	

What	is	private	access	modifier?	
a. Private variables and methods can be accessed only in the class they are declared.
b. Private variables and methods from SuperClass are NOT available in SubClass.

What	is	default	or	package	access	modifier?	
a. Default variables and methods can be accessed in the same package Classes.
b. Default variables and methods from SuperClass are available only to SubClasses in same package.

What	is	protected	access	modifier?	
a. Protected variables and methods can be accessed in the same package Classes.
b. Protected variables and methods from SuperClass are available to SubClass in any package

44	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
What	is	public	access	modifier?	
a. Public variables and methods can be accessed from every other Java classes.
b. Public variables and methods from SuperClass are all available directly in the SubClass

What	access	types	of	variables	can	be	accessed	from	a	Class	in	Same	Package?	
Look	at	the	code	below	to	understand	what	can	be	accessed	and	what	cannot	be.	

package	com.rithus.membermodifiers.access;	
	
public	class	TestClassInSamePackage	{	
				public	static	void	main(String[]	args)	{	
								ExampleClass	example	=	new	ExampleClass();	
									
								example.publicVariable	=	5;	
								example.publicMethod();	
									
								//privateVariable	is	not	visible	
								//Below	Line,	uncommented,	would	give	compiler	error	
								//example.privateVariable=5;	//COMPILE	ERROR	
								//example.privateMethod();	
									
								example.protectedVariable	=	5;	
								example.protectedMethod();	
									
								example.defaultVariable	=	5;	
								example.defaultMethod();	
				}	
}	

What	 access	 types	 of	 variables	 can	 be	 accessed	 from	 a	 Class	 in	 Different	
Package?	
Look	at	the	code	below	to	understand	what	can	be	accessed	and	what	cannot	be.	

package	com.rithus.membermodifiers.access.different;	
	
import	com.rithus.membermodifiers.access.ExampleClass;	
	
public	class	TestClassInDifferentPackage	{	
				public	static	void	main(String[]	args)	{	
								ExampleClass	example	=	new	ExampleClass();	
	
								example.publicVariable	=	5;	
								example.publicMethod();	
									
								//privateVariable,privateMethod	are	not	visible	
								//Below	Lines,	uncommented,	would	give	compiler	error	
								//example.privateVariable=5;	//COMPILE	ERROR	
								//example.privateMethod();//COMPILE	ERROR	
									
								//protectedVariable,protectedMethod	are	not	visible	
								//Below	Lines,	uncommented,	would	give	compiler	error	
								//example.protectedVariable	=	5;	//COMPILE	ERROR	
								//example.protectedMethod();//COMPILE	ERROR	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 45	

	
									
								//defaultVariable,defaultMethod	are	not	visible	
								//Below	Lines,	uncommented,	would	give	compiler	error	
								//example.defaultVariable	=	5;//COMPILE	ERROR	
								//example.defaultMethod();//COMPILE	ERROR	
				}	
}	

What	 access	 types	 of	 variables	 can	 be	 accessed	 from	 a	 Sub	 Class	 in	 Same	
Package?	
Look	at	the	code	below	to	understand	what	can	be	accessed	and	what	cannot	be.	

package	com.rithus.membermodifiers.access;	
	
public	class	SubClassInSamePackage	extends	ExampleClass	{	
					
				void	subClassMethod(){	
								publicVariable	=	5;	
								publicMethod();	
									
								//privateVariable	is	not	visible	to	SubClass	
								//Below	Line,	uncommented,	would	give	compiler	error	
								//privateVariable=5;	//COMPILE	ERROR	
								//privateMethod();	
									
								protectedVariable	=	5;	
								protectedMethod();	
									
								defaultVariable	=	5;	
								defaultMethod();	
				}					
}	

What	access	 types	of	variables	can	be	accessed	 from	a	Sub	Class	 in	Different	
Package?	
Look	at	the	code	below	to	understand	what	can	be	accessed	and	what	cannot	be.	

package	com.rithus.membermodifiers.access.different;	
	
import	com.rithus.membermodifiers.access.ExampleClass;	
	
public	class	SubClassInDifferentPackage	extends	ExampleClass	{	
					
				void	subClassMethod(){	
								publicVariable	=	5;	
								publicMethod();	
									
								//privateVariable	is	not	visible	to	SubClass	
								//Below	Line,	uncommented,	would	give	compiler	error	
								//privateVariable=5;	//COMPILE	ERROR	
								//privateMethod();	
									

46	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
								protectedVariable	=	5;	
								protectedMethod();	
									
								//privateVariable	is	not	visible	to	SubClass	
								//Below	Line,	uncommented,	would	give	compiler	error	
								//defaultVariable	=	5;	//COMPILE	ERROR	
								//defaultMethod();	
				}					
}	

What	is	the	use	of	a	final	modifier	on	a	class?	
Final	 class	 cannot	 be	 extended.	Example of Final class in Java is the String class. Final is used very
rarely as it prevents re-use of the class.Consider	the	class	below	which	is	declared	as	final.	
	
Final	Class	examples	:	String,	Integer,	Double	and	other	wrapper	classes	

final	public	class	FinalClass	{	
}	
	
Below	class	will	not	compile	if	uncommented.	FinalClass	cannot	be	extended.	

/*	
class	ExtendingFinalClass	extends	FinalClass{	//COMPILER	ERROR	
					
}	
*/

What	is	the	use	of	a	final	modifier	on	a	method?	
Final	methods	 cannot	 be	 overridden.	 Consider	 the	 class	 FinalMemberModifiersExample	 with	method	
finalMethod	which	is	declared	as	final.	

public	class	FinalMemberModifiersExample	{	
				final	void	finalMethod(){	
				}	
}	
	
Any	SubClass	extending	above	class	cannot	override	the	finalMethod().	

class	SubClass	extends	FinalMemberModifiersExample	{	
				//final	method	cannot	be	over-riddent	
				//Below	method,	uncommented,	causes	compilation	Error	
				/*	
				final	void	finalMethod(){	
									
				}	
				*/	
}	

What	is	a	Final	variable?	
Once	initialized,	the	value	of	a	final	variable	cannot	be	changed.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 47	

	
final	int	finalValue	=	5;	
//finalValue	=	10;	//COMPILER	ERROR	
	

Final	Variable	example	:	java.lang.Math.PI	

What	is	a	final	argument?	
Final	arguments	value	cannot	be	modified.	Consider	the	example	below:	

void	testMethod(final	int	finalArgument){	
				//final	argument	cannot	be	modified	
				//Below	line,	uncommented,	causes	compilation	Error	
				//finalArgument	=	5;//COMPILER	ERROR	
}	

What	happens	when	a	variable	is	marked	as	volatile?	
• Volatile can only be applied to instance variables.
• A volatile variable is one whose value is always written to and read from "main memory". Each

thread has its own cache in Java. The volatile variable will not be stored on a Thread cache.

What	is	a	Static	Variable?	
Static	variables	and	methods	are	class	level	variables	and	methods.		There	is	only	one	copy	of	the	static	
variable	for	the	entire	Class.	Each	instance	of	the	Class	(object)	will	NOT	have	a	unique	copy	of	a	static	
variable.	Let’s	start	with	a	real	world	example	of	a	Class	with	static	variable	and	methods.	

Static	Variable/Method	–	Example	
count variable in Cricketer class is static. The method to get the count value getCount() is also a static
method.

public	class	Cricketer	{	
				private	static	int	count;	
	
				public	Cricketer()	{	
								count++;	
				}	
	
				static	int	getCount()	{	
								return	count;	
				}	
	
				public	static	void	main(String[]	args)	{	
	
								Cricketer	cricketer1	=	new	Cricketer();	
								Cricketer	cricketer2	=	new	Cricketer();	
								Cricketer	cricketer3	=	new	Cricketer();	
								Cricketer	cricketer4	=	new	Cricketer();	
	
								System.out.println(Cricketer.getCount());//4	
				}	
}

48	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
4 instances of the Cricketer class are created. Variable count is incremented with every instance created
in the constructor.

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 49	

	

Conditions	&	Loops	

Why	should	you	always	use	blocks	around	if	statement?	
If	blocks	(code	between	{	and	})	are	not	used,	only	the	first	statement	after	the	 if	 is	considered	to	be	
part	of	the	if	statement.	

int	number	=	5;	
if(number	<	0)	//condn	is	false.	So	the	line	in	if	is	not	executed.	
				number	=	number	+	10;	//Not	executed	
				number++;	//This	statement	is	not	part	of	if.	Executed.	
System.out.println(number);//prints	6	

Guess	the	output	
int	m	=	15;	
	
if(m>20)	
if(m<20)	
				System.out.println("m>20");	
else	
				System.out.println("Who	am	I?");	
	
Nothing	is	printed	to	output.	Above	code	is	similar	to	code	below	

if(m>20)	{//Condn	is	false.	So,	code	in	if	is	not	executed	
				if(m<20)	
								System.out.println("m>20");	
				else	
								System.out.println("Who	am	I?");	
}	

Guess	the	output	
boolean	isTrue	=	false;	
if(isTrue==true){	
				System.out.println("TRUE	TRUE");//Will	not	be	printed	
}	
if(isTrue=true){	
				System.out.println("TRUE");//Will	be	printed.	
}	
Condition	is	isTrue=true.	This	is	assignment.	Returns	true.	So,	code	in	if	is	executed.	

Guess	the	output	of	this	switch	block.	
int	number	=	2;	
switch	(number)	{	
case	1:	
				System.out.println(1);	
case	2:	
				System.out.println(2);	
case	3:	
				System.out.println(3);	
default:	

50	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
				System.out.println("Default");	
}	
	
Output	of	above	switch	
2	
3	
Default	
In	this	example,	there	is	no	break	statement	in	every	case.	If	there	is	no	break,	then	all	the	case's	until	
we	find	break	are	executed.		

Since	there	is	no	break	after	case	2,	execution	falls	through	to	case	3.	There	is	no	break	in	case	3	as	well.	
So,	execution	falls	through	to	default.		

Rule:	 Code	 in	 switch	 is	 executed	 from	 a	 matching	 case	 until	 a	 break	 or	 end	 of	 switch	 statement	 is	
encountered.	

Guess	the	output	of	this	switch	block?	
In	below	example,	we	have	break	statements	in	case	1,	3	and	default.	There	is	no	break	in	case	2.	

number	=	2;	
switch	(number)	{	
case	1:	
				System.out.println(1);	
				break;	
case	2:	
case	3:	
				System.out.println("Number	is	2	or	3");	
				break;	
default:	
				System.out.println("Default");	
				break;	
}	

Program	Output		
Number	is	2	or	3.	

Case	2	matches.	Since	there	is	no	code	in	case	2,	execution	falls	through	to	case	3,	executes	the	println.	
Break	statement	takes	execution	out	of	the	switch	

Should	default	be	the	last	case	in	a	switch	statement?		
default	doesn't	need	to	be	the	last	case	in	an	switch.	In	the	example	below	default	is	the	first	case.	

number	=	10;	
switch	(number)	{	
default:	
				System.out.println("Default");	
				break;	
case	1:	
				System.out.println(1);	
				break;	
case	2:	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 51	

	
				System.out.println(2);	
				break;	
case	3:	
				System.out.println(3);	
				break;	
}	

Example	Output		
Default	

Can	a	Switch	statement	be	used	around	a	String		
Switch	can	be	used	only	with	Stringm	char,	byte,	short,	int	or	enum	

Guess	the	output	of	this	for	loop	
	
There	can	be	multiple	statements	in	Initialization	or	Operation	separated	by	commas	

for	(int	i	=	0,j	=	0;	i	<	10;	i++,j--)	{	
				System.out.print(j);	
}	

Code	Output	
0123456789	

What	is	an	Enhanced	For	Loop?	
Enhanced	for	loop	can	be	used	to	loop	around	array’s	or	List’s.	

int[]	numbers	=	{1,2,3,4,5};	
	
for(int	number:numbers){	
				System.out.print(number);	
}	

Example	Output	
12345	

What	is	the	output	of	the	for	loop	below?	
Any	of	3	parts	in	a	for	loop	can	be	empty.	

for	(;;)	{	
				System.out.print("I	will	be	looping	for	ever..");	
}	

Result:		
Infinite	loop	=>	Loop	executes	until	the	program	is	terminated.	

What	is	the	output	of	the	program	below?	
	
Break	statement	takes	execution	out	of	inner	most	loop.	

52	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
for	(int	j	=	0;	j	<	2;	j++)	{	
				for	(int	k	=	0;	k	<	10;	k++)	{	
								System.out.print(j	+	""	+	k);	
								if	(k	==	5)	{	
												break;//Takes	out	of	loop	using	k	
								}	
				}	
}	

Program	Output	
000102030405101112131415	
	
Each	time	the	value	of	k	is	5	the	break	statement	is	executed.	The	break	statement	takes	execution	out	
of	the	k	loop	and	proceeds	to	the	next	value	of	j.	

What	is	the	output	of	the	program	below?	
	
To	get	out	of	an	outer	for	loop,	labels	need	to	be	used.	

outer:	
				for	(int	j	=	0;	j	<	2;	j++)	{	
								for	(int	k	=	0;	k	<	10;	k++)	{	
												System.out.print(j	+	""	+	k);	
												if	(k	==	5)	{	
																break	outer;//Takes	out	of	loop	using	j	
												}	
								}	
				}	

Program	Output	
000102030405	

	 	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 53	

	
Exception	Handling	

Why	is	Exception	Handling	important?	
Most	applications	are	large	and	complex.	I’ve	not	seen	an	application	without	defects	in	my	15	year	
experience.	It	is	not	that	bad	programmers	create	defects.	Even	good	programmers	write	code	that	has	
defects	and	throws	exceptions.	There	are	two	things	that	are	important	when	exceptions	are	thrown.	

• A	friendly	message	to	the	user	:	You	do	not	want	a	windows	blue	screen.	When	something	goes	
wrong	and	an	exception	occurs,	it	would	be	great	to	let	the	user	know	that	something	went	
wrong	and	tech	support	has	been	notified.	Additional	thing	we	can	do	is	to	give	the	user	a	
unique	exception	identifier	and	information	on	how	to	reach	the	tech	support.		

• Enough	Information	for	the	Support	Team/Support	Developer	to	debug	the	problem	:	When	
writing	code,	always	think	about	what	information	would	I	need	to	debug	a	problem	in	this	
piece	of	code.	Make	sure	that	information	is	made	available,	mostly	in	the	logs,	if	there	are	
exceptions.	It	would	be	great	to	tie	the	information	with	the	unique	exception	identifier	given	to	
the	user.	

	
	

What	design	pattern	is	used	to	implement	Exception	handling	Features	in	
most	languages?	
When	an	exception	is	thrown	from	a	method	with	no	exception	handling,	it	is	thrown	to	the	calling	
method.	If	there	is	no	exception	handling	in	that	method	too,	it	is	further	thrown	up	to	its	calling	
method	and	so	on.	This	happens	until	an	appropriate	exception	handler	is	found.This	is	an	example	of	
Chain	of	Responsibility	Pattern	defined	as	“a	way	of	passing	a	request	between	a	chain	of	objects”.	

A	good	real	time	example	is	the	Loan	or	Leave	Approval	Process.	When	a	loan	approval	is	needed,	it	first	
goes	to	the	clerk.	If	he	cannot	handle	it	(large	amount),	it	goes	to	his	manager	and	so	on	until	it	is	
approved	or	rejected.	

	
public	static	void	main(String[]	args)	{	
								method1();	
				}	
	
				private	static	void	method1()	{	
								method2();	
				}	
	
				private	static	void	method2()	{	
								String	str	=	null;	
								str.toString();	
				}	

54	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Program	Output	
Exception in thread "main" java.lang.NullPointerException at
com.rithus.exceptionhandling.ExceptionHandlingExample1.method2(ExceptionHandlingExample1.java:1
5)
at
com.rithus.exceptionhandling.ExceptionHandlingExample1.method1(ExceptionHandlingExample1.java:1
0)
at com.rithus.exceptionhandling.ExceptionHandlingExample1.main(ExceptionHandlingExample1.java:6)

Look at the stack trace. Exception which is thrown in method2 is propagating to method1 and then to
main. This is because there is no exception handling in all 3 methods - main, method1 and method2

What	is	the	need	for	finally	block?	
Consider the example below: In method2, a connection is opened. However, because of the exception
thrown, connection is not closed. This results in unclosed connections.

package	com.rithus.exceptionhandling;	
	
class	Connection	{	
				void	open()	{	
								System.out.println("Connection	Opened");	
				}	
	
				void	close()	{	
								System.out.println("Connection	Closed");	
				}	
}	
	
public	class	ExceptionHandlingExample1	{	
	
				//	Exception	Handling	Example	1	
				//	Let's	add	a	try	catch	block	in	method2	
				public	static	void	main(String[]	args)	{	
								method1();	
								System.out.println("Line	after	Exception	-	Main");	
				}	
	
				private	static	void	method1()	{	
								method2();	
								System.out.println("Line	after	Exception	-	Method	1");	
				}	
	
				private	static	void	method2()	{	
								try	{	
												Connection	connection	=	new	Connection();	
												connection.open();	
	
												//	LOGIC	
												String	str	=	null;	
												str.toString();	
	
												connection.close();	
								}	catch	(Exception	e)	{	
												//	NOT	PRINTING	EXCEPTION	TRACE-	BAD	PRACTICE	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 55	

	
												System.out.println("Exception	Handled	-	Method	2");	
								}	
				}	
}	

Output
Connection Opened
Exception Handled - Method 2
Line after Exception - Method 1
Line after Exception - Main

Connection that is opened is not closed. Because an exception has occurred in method2,
connection.close() is not run. This results in a dangling (un-closed) connection.

Code	with	Finally	
Finally block is used when code needs to be executed irrespective of whether an exception is thrown. Let
us now move connection.close(); into a finally block. Also connection declaration is moved out of the try
block to make it visible in the finally block.

				private	static	void	method2()	{	
								Connection	connection	=	new	Connection();	
								connection.open();	
								try	{	
												//	LOGIC	
												String	str	=	null;	
												str.toString();	
	
								}	catch	(Exception	e)	{	
												//	NOT	PRINTING	EXCEPTION	TRACE	-	BAD	PRACTICE	
												System.out.println("Exception	Handled	-	Method	2");	
								}	finally	{	
												connection.close();	
								}	
				}	

Output
Connection Opened
Exception Handled - Method 2
Connection Closed
Line after Exception - Method 1
Line after Exception - Main

Connection is closed even when exception is thrown. This is because connection.close() is called in the
finally block.
Finally block is always executed (even when an exception is thrown). So, if we want some code to be
always executed we can move it to finally block.

In	what	scenarios	is	code	in	finally	not	executed?	
Code in finally is NOT executed only in two situations.
If exception is thrown in finally.
If JVM Crashes in between (for example, System.exit()).

56	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Will	finally	be	executed	in	the	program	below?	
private	static	void	method2()	{	

								Connection	connection	=	new	Connection();	
								connection.open();	
								try	{	
												//	LOGIC					
												String	str	=	null;	
												str.toString();	
												return;	
								}	catch	(Exception	e)	{	
												//	NOT	PRINTING	EXCEPTION	TRACE	-	BAD	PRACTICE	
												System.out.println("Exception	Handled	-	Method	2");	
												return;	
								}	finally	{	
												connection.close();	
								}	
				}	
	

Yes.	It	will	be.	Finally	will	be	executed	even	when	there	is	a	return	statement	in	try	or	catch.	

Is	try	without	a	catch	is	allowed?	
Yes.	It	is.	

private	static	void	method2()	{	

								Connection	connection	=	new	Connection();	
								connection.open();	
								try	{	
												//	LOGIC	
												String	str	=	null;	
												str.toString();	
								}	finally	{	
												connection.close();	
								}	
				}	

Output:
Connection Opened
Connection Closed
Exception in thread "main" java.lang.NullPointerException at
com.rithus.exceptionhandling.ExceptionHandlingExample1.method2(ExceptionHandlingExample1.java:3
3) at
com.rithus.exceptionhandling.ExceptionHandlingExample1.method1(ExceptionHandlingExample1.java:2
2) at
com.rithus.exceptionhandling.ExceptionHandlingExample1.main(ExceptionHandlingExample1.java:17)

Try without a catch is useful when you would want to do something (close a connection) even if an
exception occurred without handling the exception.

Is	try	without	catch	and	finally	allowed?	
No.	Below	method	would	give	a	Compilation	Error!!	(End	of	try	block)	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 57	

	
				private	static	void	method2()	{	
								Connection	connection	=	new	Connection();	
								connection.open();	
								try	{	
												//	LOGIC	
												String	str	=	null;	
												str.toString();	
								}//COMPILER	ERROR!!	
				}	

Can	you	explain	the	hierarchy	of	Exception	Handling	classes?	
Throwable is the highest level of Error Handling classes.

Below class definitions show the pre-defined exception hierarchy in Java.

//Pre-defined	Java	Classes	
class	Error	extends	Throwable{}	
class	Exception	extends	Throwable{}	
class	RuntimeException	extends	Exception{}	
	
Below class definitions show creation of a programmer defined exception in Java.	
//Programmer	defined	classes	
class	CheckedException1	extends	Exception{}	
class	CheckedException2	extends	CheckedException1{}	
	
class	UnCheckedException	extends	RuntimeException{}	
class	UnCheckedException2	extends	UnCheckedException{}	

What	is	the	difference	between	Error	and	Exception?	

Error	
Error is used in situations when there is nothing a programmer can do about an error. Ex:
StackOverflowError, OutOfMemoryError.

Exception	
Exception is used when a programmer can handle the exception.

What	is	the	difference	between	Checked	Exceptions	and	Unchecked	
Exceptions?	

Un-Checked	Exception	
RuntimeException and classes that extend RuntimeException are called unchecked exceptions. For
Example: RuntimeException,UnCheckedException,UnCheckedException2 are unchecked or RunTime
Exceptions. There are subclasses of RuntimeException (which means they are subclasses of Exception
also.)

Checked	Exception
Other Exception Classes (which don’t fit the earlier definition). These are also called Checked Exceptions.
Exception, CheckedException1,CheckedException2 are checked exceptions. They are subclasses of
Exception which are not subclasses of RuntimeException.

58	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
How	do	you	throw	an	exception	from	a	method?
Method addAmounts in Class AmountAdder adds amounts. If amounts are of different currencies it
throws an exception.

class	Amount	{	
				public	Amount(String	currency,	int	amount)	{	
								this.currency	=	currency;	
								this.amount	=	amount;	
				}	
	
				String	currency;//	Should	be	an	Enum	
				int	amount;//	Should	ideally	use	BigDecimal	
}	
	
//	AmountAdder	class	has	method	addAmounts	which	is	throwing	a	RuntimeException	
class	AmountAdder	{	
				static	Amount	addAmounts(Amount	amount1,	Amount	amount2)	{	
								if	(!amount1.currency.equals(amount2.currency))	{	
												throw	new	RuntimeException("Currencies	don't	match");	
								}	
								return	new	Amount(amount1.currency,	amount1.amount	+	amount2.amount);	
				}	
}	
	
public	class	ExceptionHandlingExample2	{	
	
				public	static	void	main(String[]	args)	{	
								AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",	5));	
				}	
	
}	

Output	
Exception in thread "main" java.lang.RuntimeException: Currencies don't match
at com.rithus.exceptionhandling.AmountAdder.addAmounts(ExceptionHandlingExample2.java:17)
at com.rithus.exceptionhandling.ExceptionHandlingExample2.main(ExceptionHandlingExample2.java:28)

Exception message shows the type of exception(java.lang.RuntimeException) and the string message
passed to the RuntimeException constructor("Currencies don't match");

What	happens	when	you	throw	a	Checked	Exception	from	a	method?
Let us now try to change the method addAmounts to throw an Exception instead of RuntimeException. It
gives us a compilation error.

class	AmountAdder	{	
				static	Amount	addAmounts(Amount	amount1,	Amount	amount2)	{	
								if	(!amount1.currency.equals(amount2.currency))	{	
												throw	 new	 Exception("Currencies	 don't	 match");//	 COMPILER	 ERROR!																
//	Unhandled	exception	type	Exception	
								}	
								return	new	Amount(amount1.currency,	amount1.amount	+	amount2.amount);	
				}	
}	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 59	

	
What	are	the	options	you	have	to	eliminate	compilation	errors	when	handling	
checked	exceptions?	
All	classes	that	are	not	RuntimeException	or	subclasses	of	RuntimeException	but	extend	Exception	are	
called	CheckedExceptions.	The	rule	for	CheckedExceptions	is	that	they	should	either	be	handled	or	
thrown.	Handled	means	it	should	be	completed	handled	-	i.e.	not	throw	out	of	the	method.	Thrown	
means	the	method	should	declare	that	it	throws	the	exception	

Option	1	:	Declaring	that	a	method	would	throw	an	exception		
Let's look at how to declare throwing an exception from a method.

class	AmountAdder	{	
				static	Amount	addAmounts(Amount	amount1,	Amount	amount2)	throws	Exception	{	
								if	(!amount1.currency.equals(amount2.currency))	{	
												throw	new	Exception("Currencies	don't	match");	
								}	
								return	new	Amount(amount1.currency,	amount1.amount	+	amount2.amount);	
				}	
}	

Look at the line "static Amount addAmounts(Amount amount1, Amount amount2) throws Exception". This
is how we declare that a method throws Exception. This results in compilation error in main method. This
is because Main method is calling a method which is declaring that it might throw Exception. Main method
again has two options a. Throw b. Handle

Code with main method throwing the exception below

				public	static	void	main(String[]	args)	throws	Exception	{	
								AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",	5));	
				}	

Output	
Exception in thread "main" java.lang.Exception: Currencies don't match
at com.rithus.exceptionhandling.AmountAdder.addAmounts(ExceptionHandlingExample2.java:17)
at com.rithus.exceptionhandling.ExceptionHandlingExample2.main(ExceptionHandlingExample2.java:28)

Option	2	:	Handling	the	Check	Exception	with	a	try	catch	block	
main can also handle the exception instead of declaring throws. Code for it below.
public	static	void	main(String[]	args)	{	

								try	{	
												AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",5));	
								}	catch	(Exception	e)	{	
												System.out.println("Exception	Handled	in	Main");	
								}	
				}	

Output	
Exception Handled in Main

60	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
How	do	you	create	a	Custom	Exception?	
For the scenario above we can create a customized exception, CurrenciesDoNotMatchException. If we
want to make it a Checked Exception, we can make it extend Exception class. Otherwise, we can extend
RuntimeException class.

Option	1	:	Extending	Exception	or	subclass	of	Exception	:	Creating	Checked	Exception	
class	CurrenciesDoNotMatchException	extends	Exception{	
}	

No we can change the method addAmounts to throw CurrenciesDoNotMatchException - even the
declaration of the method changed.

class	AmountAdder	{	
				static	Amount	addAmounts(Amount	amount1,	Amount	amount2)	
												throws	CurrenciesDoNotMatchException	{	
								if	(!amount1.currency.equals(amount2.currency))	{	
												throw	new	CurrenciesDoNotMatchException();	
								}	
								return	new	Amount(amount1.currency,	amount1.amount	+	amount2.amount);	
				}	
}	

main method needs to be changed to catch: CurrenciesDoNotMatchException
	
public	class	ExceptionHandlingExample2	{	
				public	static	void	main(String[]	args)	{	
								try	{	
												AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",	
																				5));	
								}	catch	(CurrenciesDoNotMatchException	e)	{	
												System.out.println("Exception	Handled	in	Main"	+	e.getClass());	
								}	
				}	
}	

Output:
Exception Handled in Mainclass com.rithus.exceptionhandling.CurrenciesDoNotMatchException

Let’s change main method to handle Exception instead of CurrenciesDoNotMatchException		
	
public	class	ExceptionHandlingExample2	{	
				public	static	void	main(String[]	args)	{	
								try	{	
												AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",5));	
								}	catch	(Exception	e)	{	
												System.out.println("Exception	Handled	in	Main"	+	e.getClass());	
								}	
				}	
}	

Output:
Exception Handled in Mainclass com.rithus.exceptionhandling.CurrenciesDoNotMatchException

There is no change in output from the previous example. This is because Exception catch block can catch
Exception and all subclasses of Exception.

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 61	

	
Option	2	:	Extend	RuntimeException	
Let’s change the class CurrenciesDoNotMatchException to extend RuntimeException instead of
Exception
class	CurrenciesDoNotMatchException	extends	RuntimeException{	
}	

Output:
Exception Handled in Mainclass com.rithus.exceptionhandling.CurrenciesDoNotMatchException

Change methods addAmounts in AmountAdder to remove the declaration " throws
CurrenciesDoNotMatchException"

No compilation error occurs since RuntimeException and subclasses of RuntimeException are not
Checked Exception's. So, they don't need to be handled or declared. If you are interested in handling
them, go ahead and handle them. But, java does not require you to handle them.

Remove try catch from main method. It is not necessary since CurrenciesDoNotMatchException is now a
RuntimeException.

public	class	ExceptionHandlingExample2	{	
				public	static	void	main(String[]	args)	{	
								AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",	5));	
				}	
}	

Output:
Exception in thread "main" com.rithus.exceptionhandling.CurrenciesDoNotMatchException at
com.rithus.exceptionhandling.AmountAdder.addAmounts(ExceptionHandlingExample2.java:21)
at com.rithus.exceptionhandling.ExceptionHandlingExample2.main(ExceptionHandlingExample2.java:30)

What	is	the	output	of	the	program	below?	

				public	static	void	main(String[]	args)	{	
								try	{	
												AmountAdder.addAmounts(new	Amount("RUPEE",	5),	new	Amount("DOLLAR",	
																				5));	
								}	catch	(Exception	e)	{		
												System.out.println("Handled	Exception");	
								}	catch	(CurrenciesDoNotMatchException	e)	{	
												System.out.println("Handled	CurrenciesDoNotMatchException");	
								}	
				}	
	

Compilation	Error.	Specific	Exception	catch	blocks	should	be	before	the	catch	block	for	a	Generic	
Exception.	For	example,	CurrenciesDoNotMatchException	should	be	before	Exception.		

How	 do	 you	 handle	multiple	 exception	 types	with	 same	 exception	 handling	
block?	
This	is	a	new	feature	in	Java	7.	

62	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
try {
 ...
} catch(IOException | SQLException ex) {
 ...
}

Can	you	explain	about	try	with	resources?	
	

Consider	the	example	below.	When	the	try	block	ends	the	resources	are	automatically	released.	We	do	
not	need	to	create	a	separate	finally	block.	

try	(BufferedReader	br	=	new	BufferedReader(new	FileReader("FILE_PATH")))	
{	

String	line;	
	 while	((line	=	br.readLine())	!=	null)	{	
	 	 System.out.println(line);	
	 }	
}	catch	(IOException	e)	{	

e.printStackTrace();	
}	

How	does	try	with	resources	work?		
try-with-resources	is	available	to	any	class	that	implements	the	AutoCloseable	interface.	In	the	above	
example	BufferedReader	implements	AutoCloseable	interface.	

public	interface	AutoCloseable	{	
void	close()	throws	Exception;	

}	

Can	you	explain	a	few	Exception	Handling	Best	Practices?	
First	of	all	:	In	all	above	examples	we	have	not	followed	an	Exception	Handling	good	practice(s).		We	
were	trying	to	give	quick	examples.	So	here	is	a	list	of	best	practices.	

• Never	Hide	Exceptions.	At	the	least	log	them.	printStactTrace	method	prints	the	entire	stack	
trace	when	an	exception	occurs.	If	you	handle	an	exception,	it	is	always	a	good	practice	to	log	
the	trace.	

• Do	not	use	exception	handling	for	flow	control	in	a	program.	They	have	a	significant	
performance	impact.	

• Think	about	the	user.	What	does	the	user	want	to	see	if	there	is	an	exception?	
• Think	about	the	support	developer.	What	does	the	support	developer	need	to	debug	the	

exception?	
• Think	about	the	calling	method.	Can	the	calling	method	do	something	about	the	exception	being	

thrown?	If	not,	create	un	checked	exceptions.	For	example,	Spring	Framework	chooses	to	make	
most	of	the	jdbc	exceptions	as	unchecked	exceptions	because	,	in	most	cases,	there	is	nothing	
that	a	caller	of	the	method	can	do	about	a	jdbc	exception.	

• Have	global	exception	handling.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 63	

	

Miscellaneous	Topics	

What	are	the	default	values	in	an	array?	
New	Arrays	are	always	initialized	with	default	values.	

int	marks2[]	=	new	int[5];	
System.out.println(marks2[0]);//0	
	
Default	Values	

byte,short,int,long				0		

float,double								0.0		

boolean									false	

object												null	

How	do	you	loop	around	an	array	using	enhanced	for	loop?	
Name	of	the	variable	is	mark	and	the	array	we	want	to	loop	around	is	marks.	

for	(int	mark:	marks)	{	
				System.out.println(mark);	
}	

How	do	you	print	the	content	of	an	array?	
Let’s	look	at	different	methods	in	java	to	print	the	content	of	an	array.	

Printing	a	1D	Array	
int	marks5[]	=	{	25,	30,	50,	10,	5	};	
System.out.println(marks5);	//[I@6db3f829	
System.out.println(
				Arrays.toString(marks5));//[25,	30,	50,	10,	5]	

Printing	a	2D	Array	
int[][]	matrix3	=	{	{	1,	2,	3	},	{	4,	5,	6	}	};	
System.out.println(matrix3);	//[[I@1d5a0305	
System.out.println(
								Arrays.toString(matrix3));		
//[[I@6db3f829,	[I@42698403]	
System.out.println(
								Arrays.deepToString(matrix3));		
//[[1,	2,	3],	[4,	5,	6]]	
	
matrix3[0]	is	a	1D	Array	

System.out.println(matrix3[0]);//[I@86c347	
System.out.println(Arrays.toString(matrix3[0]));//[1,	2,	3]	

64	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
How	do	you	compare	two	arrays?	
Arrays	can	be	compared	using	static	method	equals	defined	in	Arrays	class.	Two	arrays	are	equal	only	if	
they	have	the	same	numbers	in	all	positions	and	have	the	same	size.	

int[]	numbers1	=	{	1,	2,	3	};	
int[]	numbers2	=	{	4,	5,	6	};	
	
System.out.println(Arrays	
								.equals(numbers1,	numbers2));	//false	
	
int[]	numbers3	=	{	1,	2,	3	};	
System.out.println(Arrays.equals(numbers1,	numbers3));	//true	

What	is	an	Enum?	
Enum allows specifying a list of values for a Type. Consider the example below. It declares an enum
Season with 4 possible values.
				enum	Season	{	
								WINTER,	SPRING,	SUMMER,	FALL	
				};	

Can	you	use	a	Switch	Statement	around	an	Enum?	
Example	below	shows	how	we	can	use	a	switch	around	an	enum.	

								//Using	switch	statement	on	an	enum	
								public	int	getExpectedMaxTemperature()	{	
												switch	(this)	{	
												case	WINTER:	
																return	5;	
												case	SPRING:	
												case	FALL:	
																return	10;	
												case	SUMMER:	
																return	20;	
												}	

												return	-1;//	Dummy	since	Java	does	not	recognize	this	is	possible												
}	

What	are	Variable	Arguments	or	varargs?	
Variable Arguments allow calling a method with different number of parameters. Consider the example
method sum below. This sum method can be called with 1 int parameter or 2 int parameters or more int
parameters.

				//int(type)	followed	...	(three	dot's)	is	syntax	of	a	variable	argument.		
				public	int	sum(int...	numbers)	{	
								//inside	the	method	a	variable	argument	is	similar	to	an	array.	
								//number	can	be	treated	as	if	it	is	declared	as	int[]	numbers;	
								int	sum	=	0;	
								for	(int	number:	numbers)	{	
												sum	+=	number;	
								}	
								return	sum;	
				}	
	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 65	

	
				public	static	void	main(String[]	args)	{	
								VariableArgumentExamples	example	=	new	VariableArgumentExamples();	
								//3	Arguments	
								System.out.println(example.sum(1,	4,	5));//10	
								//4	Arguments	
								System.out.println(example.sum(1,	4,	5,	20));//30	
								//0	Arguments	
								System.out.println(example.sum());//0	
				}	

What	are	Asserts	used	for?	
Assertions are introduced in Java 1.4. They enable you to validate assumptions. If an assert fails (i.e.
returns false), AssertionError is thrown (if assertions are enabled). Basic assert is shown in the example
below	
	
private	int	computerSimpleInterest(int	principal,float	interest,int	years){	
				assert(principal>0);	
				return	100;	
}	

When	should	Asserts	be	used?	
Assertions should not be used to validate input data to a public method or command line argument.
IllegalArgumentException would be a better option. In public method, only use assertions to check for
cases which are never supposed to happen.

What	is	Garbage	Collection?	
Garbage Collection is a name given to automatic memory management in Java. Aim of Garbage
Collection is to Keep as much of heap available (free) for the program as possible. JVM removes objects
on the heap which no longer have references from the heap.

Can	you	explain	Garbage	Collection	with	an	example?	
Let’s say the below method is called from a function.
	
void	method(){	
				Calendar	calendar	=	new	GregorianCalendar(2000,10,30);	
				System.out.println(calendar);	
}	

An object of the class GregorianCalendar is created on the heap by the first line of the function with one
reference variable calendar.

After the function ends execution, the reference variable calendar is no longer valid. Hence, there are no
references to the object created in the method.

JVM recognizes this and removes the object from the heap. This is called Garbage Collection.

When	is	Garbage	Collection	run?	
Garbage Collection runs at the whims and fancies of the JVM (it isn't as bad as that). Possible situations
when Garbage Collection might run are

• when available memory on the heap is low
• when cpu is free

66	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
What	are	best	practices	on	Garbage	Collection?	
Programmatically, we can request (remember it’s just a request - Not an order) JVM to run Garbage
Collection by calling System.gc() method.

JVM might throw an OutOfMemoryException when memory is full and no objects on the heap are eligible
for garbage collection.

finalize() method on the objected is run before the object is removed from the heap from the garbage
collector. We recommend not to write any code in finalize();

What	are	Initialization	Blocks?	
Initialization Blocks - Code which runs when an object is created or a class is loaded

There are two types of Initialization Blocks
Static Initializer: Code that runs when a class is loaded.
Instance Initializer: Code that runs when a new object is created.

What	is	a	Static	Initializer?	
Look at the example below:
	
public	class	InitializerExamples	{	
static	int	count;	
int	i;	
	
static{	
				//This	is	a	static	initializers.	Run	only	when	Class	is	first	loaded.	
				//Only	static	variables	can	be	accessed	
				System.out.println("Static	Initializer");	
				//i	=	6;//COMPILER	ERROR	
				System.out.println("Count	when	Static	Initializer	is	run	is	"	+	count);	
}	
	
public	static	void	main(String[]	args)	{	
				InitializerExamples	example	=	new	InitializerExamples();	

InitializerExamples	example2	=	new	InitializerExamples();	
InitializerExamples	example3	=	new	InitializerExamples();	

}	
}	

Code	within	static{	and	}	is	called	a	static	initializer.	This	is	run	only	when	class	is	first	loaded.	Only	static	
variables	can	be	accessed	in	a	static	initializer.	

Example	Output	
Static	Initializer	

Count	when	Static	Initializer	is	run	is	0	

Even though three instances are created static initializer is run only once.

What	is	an	Instance	Initializer	Block?	
Let’s look at an example
public	class	InitializerExamples	{	
				static	int	count;	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 67	

	
				int	i;	
				{	
								//This	is	an	instance	initializers.	Run	every	time	an	object	is	created.	
								//static	and	instance	variables	can	be	accessed	
								System.out.println("Instance	Initializer");	
								i	=	6;	
								count	=	count	+	1;	
								System.out.println("Count	when	Instance	Initializer	is	run	is	"	+	count);	
				}	
									
				public	static	void	main(String[]	args)	{	
								InitializerExamples	example	=	new	InitializerExamples();	
								InitializerExamples	example1	=	new	InitializerExamples();	
								InitializerExamples	example2	=	new	InitializerExamples();	
				}	
	
}	

Code within instance initializer is run every time an instance of the class is created.

Example	Output	
Instance	Initializer	

Count	when	Instance	Initializer	is	run	is	1	

Instance	Initializer	

Count	when	Instance	Initializer	is	run	is	2	

Instance	Initializer	

Count	when	Instance	Initializer	is	run	is	3	

What	is	Tokenizing?	
Tokenizing	means	splitting	a	string	into	several	sub	strings	based	on	delimiters.	For	example,	delimiter	;	
splits	the	string	ac;bd;def;e	into	four	sub	strings	ac,	bd,	def	and	e.	

Delimiter	can	in	itself	be	any	of	the	regular	expression(s)	we	looked	at	earlier.	

String.split(regex)	function	takes	regex	as	an	argument.	

Can	you	give	an	example	of	Tokenizing?	
private	static	void	tokenize(String	string,String	regex)	{	
				String[]	tokens	=	string.split(regex);	
				System.out.println(Arrays.toString(tokens));	
}	

Example:	
tokenize("ac;bd;def;e",";");//[ac,	bd,	def,	e]	

What	is	Serialization?	
Serialization helps us to save and retrieve the state of an object.

• Serialization => Convert object state to some internal object representation.
• De-Serialization => The reverse. Convert internal representation to object.

Two important methods

68	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

• ObjectOutputStream.writeObject() // serialize and write to file
• ObjectInputStream.readObject() // read from file and deserialize

How	do	you	serialize	an	object	using	Serializable	interface?	
To serialize an object it should implement Serializable interface. In the example below, Rectangle class
implements Serializable interface. Note that Serializable interface does not declare any methods to be
implemented.

Below	example	shows	how	an	instance	of	an	object	can	be	serialized.	We	are	creating	a	
new	Rectangle	object	and	serializing	it	to	a	file	Rectangle.ser.	

class	Rectangle	implements	Serializable	{	
				public	Rectangle(int	length,	int	breadth)	{	
								this.length	=	length;	
								this.breadth	=	breadth;	
								area	=	length	*	breadth;	
				}	
	
				int	length;	
				int	breadth;	
				int	area;	
}	
	
FileOutputStream	fileStream	=	new	FileOutputStream("Rectangle.ser");	
ObjectOutputStream	objectStream	=	new	ObjectOutputStream(fileStream);	
objectStream.writeObject(new	Rectangle(5,	6));	
objectStream.close();	

How	do	you	de-serialize	in	Java?	
Below	 example	 show	 how	 a	 object	 can	 be	 deserialized	 from	 a	 serialized	 file.	 A	
rectangle	object	is	deserialized	from	the	file	Rectangle.ser	
	
FileInputStream	fileInputStream	=	new	FileInputStream("Rectangle.ser");	
ObjectInputStream	objectInputStream	=	new	ObjectInputStream(
								fileInputStream);	
Rectangle	rectangle	=	(Rectangle)	objectInputStream.readObject();	
objectInputStream.close();	
System.out.println(rectangle.length);//	5	
System.out.println(rectangle.breadth);//	6	
System.out.println(rectangle.area);//	30	

What	do	you	do	if	only	parts	of	the	object	have	to	be	serialized?	
We mark all the properties of the object which should not be serialized as transient. Transient attributes in
an object are not serialized. Area in the previous example is a calculated value. It is unnecessary to
serialize and deserialize. We can calculate it when needed. In this situation, we can make the variable
transient. Transient variables are not serialized. (transient	int	area;)

//Modified Rectangle class

class	Rectangle	implements	Serializable	{	
				public	Rectangle(int	length,	int	breadth)	{	
								this.length	=	length;	
								this.breadth	=	breadth;	
								area	=	length	*	breadth;	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 69	

	
				}	
	
				int	length;	
				int	breadth;	
				transient	int	area;	
}	

If you run the program again, you would get following output

System.out.println(rectangle.length);//	5	
System.out.println(rectangle.breadth);//	6	
System.out.println(rectangle.area);//	0	

Note that the value of rectangle.area is set to 0. Variable area is marked transient. So, it is not stored into
the serialized file. And when de-serialization happens area value is set to default value i.e. 0.

How	do	you	serialize	a	hierarchy	of	objects?	
Objects of one class might contain objects of other classes. When serializing and de-serializing, we might
need to serialize and de-serialize entire object chain. All classes that need to be serialized have to
implement the Serializable interface. Otherwise, an exception is thrown. Look at the class below. An
object of class House contains an object of class Wall.

class	House	implements	Serializable	{	
				public	House(int	number)	{	
								super();	
								this.number	=	number;	
				}	
	
				Wall	wall;	
				int	number;	
}	
	
class	Wall{	
				int	length;	
				int	breadth;	
				int	color;	
}	

House implements Serializable. However, Wall doesn't implement Serializable. When we try to serialize
an instance of House class, we get the following exception. 	

Output:
Exception	 in	 thread	 "main"	 java.io.NotSerializableException:	
com.rithus.serialization.Wall	
				at	java.io.ObjectOutputStream.writeObject0(Unknown	Source)	
				at	java.io.ObjectOutputStream.defaultWriteFields(Unknown	Source)	

This is because Wall is not serializable. Two solutions are possible.

1. Make Wall transient. Wall object will not be serialized. This causes the wall object state to be lost.
2. Make Wall implement Serializable. Wall object will also be serialized and the state of wall object

along with the house will be stored.
	
class	House	implements	Serializable	{	

70	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
				public	House(int	number)	{	
								super();	
								this.number	=	number;	
				}	
	
				transient	Wall	wall;	
				int	number;	
}	
	
class	Wall	implements	Serializable	{	
				int	length;	
				int	breadth;	
				int	color;	
}	

With both these programs, earlier main method would run without throwing an exception.

If you try de-serializing, In Example2, state of wall object is retained whereas in Example1, state of wall
object is lost.

Are	the	constructors	in	an	object	invoked	when	it	is	de-serialized?	
No. When a class is De-serialized, initialization (constructor’s, initializer’s) does not take place. The state
of the object is retained as it is.

Are	the	values	of	static	variables	stored	when	an	object	is	serialized?	
Static Variables are not part of the object. They are not serialized.
	 	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 71	

	
Collections	

Why	do	we	need	Collections	in	Java?	
Arrays	are	not	dynamic.	Once	an	array	of	a	particular	size	 is	declared,	the	size	cannot	be	modified.	To	
add	a	new	element	 to	 the	array,	a	new	array	has	 to	be	created	with	bigger	 size	and	all	 the	elements	
from	the	old	array	copied	to	new	array.		

Collections	are	used	in	situations	where	data	is	dynamic.	Collections	allow	adding	an	element,	deleting	
an	element	and	host	of	other	operations.	There	are	a	number	of	Collections	in	Java	allowing	to	choose	
the	right	Collection	for	the	right	context.		

What	are	the	important	interfaces	in	the	Collection	Hierarchy?	
The	most	important	interfaces	and	their	relationships	are	highlighted	below.		

interface Collection<E> extends Iterable<E> {
}

// Unique things only - Does not allow duplication.
// If obj1.equals(obj2) then only one of them can be in the Set.
interface Set<E> extends Collection<E> {

}

// LIST OF THINGS
// Cares about which position each object is in
// Elements can be added in by specifying position - where should it be added
in
// If element is added without specifying position - it is added at the end
interface List<E> extends Collection<E> {
}
	
// Arranged in order of processing - A to-do list for example
// Queue interface extends Collection. So, it supports all Collection
Methods.
interface Queue<E> extends Collection<E> {
}
	

// A,C,A,C,E,C,M,D,H,A => {("A",5),("C",2)}
// Key - Value Pair {["key1",value1],["key2",value2],["key3",value3]}
// Things with unique identifier
interface Map<K, V> {
}

72	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
What	are	the	important	methods	that	are	declared	in	the	Collection	Interface?	
Most	 important	methods	declared	 in	 the	 collection	 interface	 are	 the	methods	 to	 add	and	 remove	an	
element.	 	add	method	allows	adding	an	element	to	a	collection	and	delete	method	allows	deleting	an	
element	from	a	collection.	

size()	methods	returns	number	of	elements	in	the	collection.	Other	important	methods	defined	as	part	
of	collection	interface	are	shown	below.		

interface	Collection<E>	extends	Iterable<E>	
{	
		boolean	add(E	paramE);	
		boolean	remove(Object	paramObject);	
	
		int	size();	
		boolean	isEmpty();	
		void	clear();	
	
		boolean	contains(Object	paramObject);	
		boolean	containsAll(Collection<?>	paramCollection);	
			
		boolean	addAll(Collection<?	extends	E>	paramCollection);	
		boolean	removeAll(Collection<?>	paramCollection);	
		boolean	retainAll(Collection<?>	paramCollection);	
			
	
		Iterator<E>	iterator();	
	
		//A	NUMBER	OF	OTHER	METHODS	AS	WELL..	
}	

Can	you	explain	briefly	about	the	List	Interface?	
List	interface	extends	Collection	interface.	So,	it	contains	all	methods	defined	in	the	Collection	interface.	
In	addition,	List	interface	allows	operation	specifying	the	position	of	the	element	in	the	Collection.	

Most	 important	 thing	 to	 remember	 about	 a	 List	 interface	 -	 any	 implementation	 of	 the	 List	 interface	
would	maintain	 the	 insertion	 order.	 	 	When	 an	 element	 A	 is	 inserted	 into	 a	 List	 (without	 specifying	
position)	and	then	another	element	B	is	inserted,	A	is	stored	before	B	in	the	List.	
When	 a	 new	 element	 is	 inserted	without	 specifying	 a	 position,	 it	 is	 inserted	 at	 the	 end	 of	 the	 list	 of	
elements.		
	
However,	We	 can	 also	 use	 the	 	 void	 add(int	 position,	 E	 paramE);	 method	 to	 insert	 an	 element	 at	 a	
specific	position.		
	
Listed	 below	 are	 some	 of	 the	 important	 methods	 in	 the	 List	 interface	 (other	 than	
those	inherited	from	Collection	interface):	
	
interface	List<E>	extends	Collection<E>	
{	
		boolean	addAll(int	paramInt,	Collection<?	extends	E>	paramCollection);	
	
		E	get(int	paramInt);	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 73	

	
		E	set(int	paramInt,	E	paramE);	
	
		void	add(int	paramInt,	E	paramE);	
		E	remove(int	paramInt);	
	
		int	indexOf(Object	paramObject);	
		int	lastIndexOf(Object	paramObject);	
	
		ListIterator<E>	listIterator();	
		ListIterator<E>	listIterator(int	paramInt);	
		List<E>	subList(int	paramInt1,	int	paramInt2);	
}	

Explain	about	ArrayList	with	an	example?	
ArrayList	implements	the	list	interface.	So,	ArrayList	stores	the	elements	in	insertion	order	(by	default).	
Element’s	can	be	inserted	into	and	removed	from	ArrayList	based	on	their	position.	

Let’s	look	at	how	to	instantiate	an	ArrayList	of	integers.	

List<Integer>	integers	=	new	ArrayList<Integer>();	
	
Code	like	below	is	permitted	because	of	auto	boxing.	5	is	auto	boxed	into	Integer	object	and	stored	in	
ArrayList.	

integers.add(5);//new	Integer(5)	
	
Add	method	(by	default)	adds	the	element	at	the	end	of	the	list.	

Can	an	ArrayList	have	Duplicate	elements?	
ArrayList	can	have	duplicates	(since	List	can	have	duplicates).		

List<String>	arraylist	=	new	ArrayList<String>();	
	
//adds	at	the	end	of	list	
arraylist.add("Sachin");//[Sachin]	
	
//adds	at	the	end	of	list	
arraylist.add("Dravid");//[Sachin,	Dravid]	
	
//adds	at	the	index	0	
arraylist.add(0,	"Ganguly");//[Ganguly,	Sachin,	Dravid]	
	
//List	allows	duplicates	-	Sachin	is	present	in	the	list	twice	
arraylist.add("Sachin");//[Ganguly,	Sachin,	Dravid,	Sachin]	
	
System.out.println(arraylist.size());//4	
System.out.println(arraylist.contains("Dravid"));//true	

How	do	you	iterate	around	an	ArrayList	using	Iterator?	
Example	below	shows	how	to	iterate	around	an	ArrayList.	

74	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Iterator<String>	arraylistIterator	=	arraylist	
								.iterator();	
while	(arraylistIterator.hasNext())	{	
				String	str	=	arraylistIterator.next();	
				System.out.println(str);//Prints	the	4	names	in	the	list	on	separate	lines.	
}	

How	do	you	sort	an	ArrayList?	
Example	below	shows	how	to	sort	an	ArrayList.	It	uses	the	Collections.sort	method.	

List<String>	numbers	=	new	ArrayList<String>();	
numbers.add("one");	
numbers.add("two");	
numbers.add("three");	
numbers.add("four");	
System.out.println(numbers);//[one,	two,	three,	four]	
	
//Strings	-	By	Default	-	are	sorted	alphabetically	
Collections.sort(numbers);	
	
System.out.println(numbers);//[four,	one,	three,	two]	

How	do	you	sort	elements	in	an	ArrayList	using	Comparable	interface?	
Consider	the	following	class	Cricketer.	

class	Cricketer	implements	Comparable<Cricketer>	{	
				int	runs;	
				String	name;	
	
				public	Cricketer(String	name,	int	runs)	{	
								super();	
								this.name	=	name;	
								this.runs	=	runs;	
				}	
	
				@Override	
				public	String	toString()	{	
								return	name	+	"	"	+	runs;	
				}	
	
				@Override	
				public	int	compareTo(Cricketer	that)	{	
								if	(this.runs	>	that.runs)	{	
												return	1;	
								}	
								if	(this.runs	<	that.runs)	{	
												return	-1;	
								}	
								return	0;	
				}	
}	
	
Let’s	now	try	to	sort	a	list	containing	objects	of	Cricketer	class.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 75	

	
List<Cricketer>	cricketers	=	new	ArrayList<Cricketer>();	
cricketers.add(new	Cricketer("Bradman",	9996));	
cricketers.add(new	Cricketer("Sachin",	14000));	
cricketers.add(new	Cricketer("Dravid",	12000));	
cricketers.add(new	Cricketer("Ponting",	11000));	
System.out.println(cricketers);	
//[Bradman	9996,	Sachin	14000,	Dravid	12000,	Ponting	11000]	
	
Now	let’s	try	to	sort	the	cricketers.	

Collections.sort(cricketers);	
System.out.println(cricketers);	
//[Bradman	9996,	Ponting	11000,	Dravid	12000,	Sachin	14000]	
	

How	do	you	sort	elements	in	an	ArrayList	using	Comparator	interface?	
	
Other	option	to	sort	collections	is	by	creating	a	separate	class	which	implements	Comparator	interface.	
Example	below:	

class	DescendingSorter	implements	Comparator<Cricketer>	{	
	
				//compareTo	returns	-1	if	cricketer1	<	cricketer2	
				//																			1	if	cricketer1	>	cricketer2	
				//																			0	if	cricketer1	=	cricketer2	
	
				//Since	we	want	to	sort	in	descending	order,		
				//we	should	return	-1	when	runs	are	more	
				@Override	
				public	int	compare(Cricketer	cricketer1,	
												Cricketer	cricketer2)	{	
								if	(cricketer1.runs	>	cricketer2.runs)	{	
												return	-1;	
								}	
								if	(cricketer1.runs	<	cricketer2.runs)	{	
												return	1;	
								}	
								return	0;	
				}	
	
}	
	
Let’s	now	try	to	sort	the	previous	defined	collection:	

Collections	
								.sort(cricketers,	new	DescendingSorter());	
	
System.out.println(cricketers);	
//[Sachin	14000,	Dravid	12000,	Ponting	11000,	Bradman	9996]	

What	is	Vector	class?	How	is	it	different	from	an	ArrayList?	
class Vector /* implements List<E>, RandomAccess */{

76	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
 // Thread Safe - Synchronized Methods
 // implements RandomAccess, a marker interface, meaning it support fast
 // almost constant time - access
}
Vector	has	the	same	operations	as	an	ArrayList.	However,	all	methods	 in	Vector	are	synchronized.	So,	
we	can	use	Vector	if	we	share	a	list	between	two	threads	and	we	would	want	to	them	synchronized.	

What	 is	 LinkedList?	What	 interfaces	 does	 it	 implement?	 How	 is	 it	 different	
from	an	ArrayList?	

class LinkedList /* implements List<E>, Queue */{
 // Elements are doubly linked - forward and backword - to one another
 // Ideal choice to implement Stack or Queue
 // Iteration is slower than ArrayList
 // Fast Insertion and Deletion
 // Implements Queue interface. Supports methods like peek(), poll()
 // and remove()
}
	

Linked	List	extends	List	and	Queue.Other	than	operations	exposed	by	the	Queue	 interface,	 	LinkedList	
has	 the	 same	 operations	 as	 an	 ArrayList.	 However,	 the	 underlying	 implementation	 of	 Linked	 List	 is	
different	from	that	of	an	ArrayList.		

ArrayList	uses	an	Array	kind	of	structure	to	store	elements.	So,	inserting	and	deleting	from	an	ArrayList	
are	expensive	operations.	However,	search	of	an	ArrayList	is	faster	than	LinkedList.	

LinkedList	uses	a	 linked	representation.	Each	object	holds	a	 link	 to	 the	next	element.	Hence,	 insertion	
and	deletion	are	faster	than	ArrayList.	But	searching	is	slower.	

Can	you	briefly	explain	about	the	Set	Interface?	
There	are	hardly	any	new	methods	in	the	Set	interface	other	than	those	in	the	Collection	interface.	The	
major	difference	is	that	Set	interface	does	not	allow	duplication.	Set	interface	represents	a	collection	
that	contains	no	duplicate	elements.	

// Unique things only - Does not allow duplication.
// If obj1.equals(obj2) then only one of them can be in the Set.
interface Set<E> extends Collection<E> {

}

What	are	the	important	interfaces	related	to	the	Set	Interface?	
// Unique things only - Does not allow duplication.
// If obj1.equals(obj2) then only one of them can be in the Set.
interface Set<E> extends Collection<E> {

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 77	

	
}

//Main difference between Set and SortedSet is - an implementation of
//SortedSet interface maintains its elements in a sorted order. Set
//interface does not guarantee any Order.
interface SortedSet<E> extends Set<E> {

 SortedSet<E> subSet(E fromElement, E toElement);

 SortedSet<E> headSet(E toElement);

 SortedSet<E> tailSet(E fromElement);

 E first();

 E last();

}

//A SortedSet extended with navigation methods reporting closest matches for
//given search targets.
interface NavigableSet<E> extends SortedSet<E> {
 E lower(E e);

 E floor(E e);

 E ceiling(E e);

 E higher(E e);

 E pollFirst();

 E pollLast();
}	

What	is	the	difference	between	Set	and	SortedSet	interfaces?	
SortedSet	Interface	extends	the	Set	Interface.	Both	Set	and	SortedSet	do	not	allow	duplicate	elements.		

Main	difference	between	Set	and	SortedSet	is	-	an	implementation	of	SortedSet	interface	maintains	its	
elements	in	a	sorted	order.		Set	interface	does	not	guarantee	any	Order.	For	example,	If	elements	4,5,3	
are	inserted	into	an	implementation	of	Set	interface,	it	might	store	the	elements	in	any	order.	However,	
if	 	 we	 use	 SortedSet,	 the	 elements	 are	 sorted.	 The	 SortedSet	 implementation	 would	 give	 an	 output	
3,4,5.	

Can	you	give	examples	of	classes	that	implement	the	Set	Interface?	
HashSet,	LinkedHashSet	and	TreeSet	implement	the	Set	interface.			

78	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
// Order of Insertion : A, X , B
// Possible Order of Storing : X, A ,B
class HashSet /* implements Set */{
 // unordered, unsorted - iterates in random order
 // uses hashCode()
}

// Order of Insertion :A, X, B
// Order of Storing : A, X, B
class LinkedHashSet /* implements Set */{
 // ordered - iterates in order of insertion
 // unsorted
 // uses hashCode()
}

// Order of Insertion :A,C,B
// Order of Storing : A,B,C
class TreeSet /* implements Set,NavigableSet */{
 // 3,5,7
 // sorted - natural order
 // implements NavigableSet
}	

What	is	a	HashSet?	
HashSet	 implements	 set	 interface.	So,	HashSet	does	not	allow	duplicates.	However,	HashSet	does	not	
support	ordering.		The	order	in	which	elements	are		inserted	is	not	maintained.		

HashSet	Example	
Set<String>	hashset	=	new	HashSet<String>();	
	
hashset.add("Sachin");	
System.out.println(hashset);//[Sachin]	
	
hashset.add("Dravid");	
System.out.println(hashset);//[Sachin,	Dravid]	
	
Let’s	try	to	add	Sachin	to	the	Set	now.	Sachin	is	Duplicate.	So	will	not	be	added.	returns	false.	

hashset.add("Sachin");//returns	false	since	element	is	not	added	
System.out.println(hashset);//[Sachin,	Dravid]	

What	is	a	LinkedHashSet?	How	is	different	from	a	HashSet?	
LinkedHashSet	implements	set	interface	and	exposes	similar	operations	to	a	HashSet.	Difference	is	that	
LinkedHashSet	maintains	insertion	order.	When	we	iterate	a	LinkedHashSet,	we	would	get	the	elements	
back	in	the	order	in	which	they	were	inserted.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 79	

	
What	is	a	TreeSet?	How	is	different	from	a	HashSet?	
TreeSet	implements	Set,	SortedSet	and	NavigableSet	interfaces.TreeSet	is	similar	to	HashSet	except	that	
it	stores	element’s	in	Sorted	Order.	

Set<String>	treeSet	=	new	TreeSet<String>();	
	
treeSet.add("Sachin");	
System.out.println(treeSet);//[Sachin]	
	
Notice	that	the	list	is	sorted	after	inserting	Dravid.	

//Alphabetical	order	
treeSet.add("Dravid");	
System.out.println(treeSet);//[Dravid,	Sachin]	
	
Notice	that	the	list	is	sorted	after	inserting	Ganguly.	

treeSet.add("Ganguly");	
System.out.println(treeSet);//[Dravid,	Ganguly,	Sachin]	
	
//Sachin	is	Duplicate.	So	will	not	be	added.	returns	false.	
treeSet.add("Sachin");//returns	false	since	element	is	not	added	
System.out.println(treeSet);//[Dravid,	Ganguly,	Sachin]	

Can	you	give	examples	of	implementations	of	NavigableSet?	
TreeSet	implements	this	interface.	Let's	look	at	an	example	with	TreeSet.	Note	that	elements	in	TreeSet	
are	sorted.	

TreeSet<Integer>	numbersTreeSet	=	new	TreeSet<Integer>();	
numbersTreeSet.add(55);	
numbersTreeSet.add(25);	
numbersTreeSet.add(35);	
numbersTreeSet.add(5);	
numbersTreeSet.add(45);	
	
NavigableSet	interface	has	following	methods.		

Lower	method	finds	the	highest	element	lower	than	specified	element.	Floor	method	finds	the	highest	
element	lower	than	or	equal	to	specified	element.	 	Corresponding	methods	for	finding	lowest	number	
higher	 than	 specified	 element	 are	 higher	 and	 ceiling.	 A	 few	 examples	 using	 the	 Set	 created	 earlier	
below.	

//Find	the	highest	number	which	is	lower	than	25	
System.out.println(numbersTreeSet.lower(25));//5	
	
//Find	the	highest	number	which	is	lower	than	or	equal	to	25	
System.out.println(numbersTreeSet.floor(25));//25	
	
//Find	the	lowest	number	higher	than	25	
System.out.println(numbersTreeSet.higher(25));//35	

80	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
	
//Find	the	lowest	number	higher	than	or	equal	to	25	
System.out.println(numbersTreeSet.ceiling(25));//25	

Explain	briefly	about	Queue	Interface?	
Queue	 Interface	 extends	 Collection	 interface.	 Queue	 Interface	 is	 typically	 used	 for	 implementation	
holding	elements	in	order	for	some	processing.			
	
Queue	 interface	 offers	 methods	 peek()	 and	 poll()	 which	 get	 the	 element	 at	 head	 of	 the	 queue.	 The	
difference	 is	 that	 poll()	 method	 removes	 the	 head	 from	 queue	 also.	 peek()	 would	 keep	 head	 of	 the	
queue	unchanged.	
	

interface Queue<E> extends Collection<E> {

 //Inserts the specified element into this queue
 //Throws exception in case of failure
 boolean add(E paramE);

 //Inserts the specified element into this queue
 //Returns false in case of failure
 boolean offer(E paramE);

 //Retrieves and removes the head of this queue.
 //Throws Exception if Queue is empty
 E remove();

 //Retrieves and removes the head of this queue.
 //returns null if Queue is empty
 E poll();

 E element();

 E peek();
}

What	are	the	important	interfaces	related	to	the	Queue	Interface?	
Two	important	interfaces	are	Deque	and	BlockingQueue.	

Explain	about	the	Deque	interface?	
//A linear collection that supports element insertion and removal at both
ends
interface Deque<E> extends Queue<E> {
 void addFirst(E e);

 void addLast(E e);

 boolean offerFirst(E e);

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 81	

	
 boolean offerLast(E e);

 E removeFirst();

 E removeLast();

 E pollFirst();

 E pollLast();

 E getFirst();

 E getLast();

 E peekFirst();

 E peekLast();

 boolean removeFirstOccurrence(Object o);

 boolean removeLastOccurrence(Object o);

}

Explain	the	BlockingQueue	interface?	
//A Queue that additionally supports operations that wait for
//the queue to become non-empty when retrieving an
//element, and wait for space to become available in the queue when
//storing an element.
interface BlockingQueue<E> extends Queue<E> {
 //Same as in Queue Interface
 //Inserts the specified element into queue IMMEDIATELY
 //Throws exception in case of failure
 boolean add(E e);

 //Same as in Queue Interface
 //Inserts the specified element into queue IMMEDIATELY
 //Returns false in case of failure
 boolean offer(E e); //Same as in Queue Interface

 //Inserts the specified element into this queue, waiting
 //if necessary for space to become available.
 void put(E e) throws InterruptedException;

 //waiting up to the specified wait time
 boolean offer(E e, long timeout, TimeUnit unit) throws
InterruptedException;

82	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	

 //waits until element becomes available
 E take() throws InterruptedException;

 //waits for specified time and returns null if time expires
 E poll(long timeout, TimeUnit unit) throws InterruptedException;

 int remainingCapacity();

 boolean remove(Object o);

 public boolean contains(Object o);

 int drainTo(Collection<? super E> c);

 int drainTo(Collection<? super E> c, int maxElements);
}

What	is	a	PriorityQueue?	
PriorityQueue	implements	the	Queue	interface.	

//The elements of the priority queue are ordered according to their natural
ordering
class PriorityQueue /* implements Queue */{
 // sorted - natural order

}
	
//Using	default	constructor	-	uses	natural	ordering	of	numbers	
//Smaller	numbers	have	higher	priority	
PriorityQueue<Integer>	priorityQueue	=	new	PriorityQueue<Integer>();	

Adding	an	element	into	priority	queue	-	offer	method	
priorityQueue.offer(24);	
priorityQueue.offer(15);	
priorityQueue.offer(9);	
priorityQueue.offer(45);	
	
System.out.println(priorityQueue);//[9,	24,	15,	45]	

Peek	method	examples	
//peek	method	get	the	element	with	highest	priority.	
System.out.println(priorityQueue.peek());//9	
//peek	method	does	not	change	the	queue	
System.out.println(priorityQueue);//[9,	24,	15,	45]	
	
//poll	method	gets	the	element	with	highest	priority.	
System.out.println(priorityQueue.poll());//9	
//peek	method	removes	the	highest	priority	element	from	the	queue.	
System.out.println(priorityQueue);//[24,	15,	45]	
	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 83	

	
//This	comparator	gives	high	priority	to	the	biggest	number.	
Comparator	reverseComparator	=	new	Comparator<Integer>()	{	
				public	int	compare(Integer	paramT1,	
												Integer	paramT2)	{	
								return	paramT2	-	paramT1;	
				}	
	
};	

Can	you	give	example	implementations	of	the	BlockingQueue	interface?	
class ArrayBlockingQueue /*implements BlockingQueue*/{
 //uses Array - optionally-bounded
}

class LinkedBlockingQueue /*implements BlockingQueue*/{
 //uses Linked List - optionally-bounded
 //Linked queues typically have higher throughput than array-based
queues but
 //less predictable performance in most concurrent applications.
}	

Can	you	briefly	explain	about	the	Map	Interface?	
First	and	foremost,	Map	interface	does	not	extend	Collection	interface.		So,	it	does	not	inherit	any	of	the	
methods	from	the	Collection	interface.	

A	Map	 interface	supports	Collections	that	use	a	key	value	pair.	A	key-value	pair	 is	a	set	of	 linked	data	
items:	a	key,	which	is	a	unique	identifier	for	some	item	of	data,	and	the	value,	which	is	either	the	data	or	
a	pointer	to	the	data.	Key-value	pairs	are	used	in	lookup	tables,	hash	tables	and	configuration	files.	A	key	
value	pair	in	a	Map	interface	is	called	an	Entry.	

Put	method	allows	to	add	a	key,	value	pair	to	the	Map.		

		V	put(K	paramK,	V	paramV);	
	
Get	method	allows	to	get	a	value	from	the	Map	based	on	the	key.	

		V	get(Object	paramObject);	
	
Other	important	methods	in	Map	Inteface	are	shown	below:	

interface	Map<K,	V>	
{	
		int	size();	
		boolean	isEmpty();	
	
		boolean	containsKey(Object	paramObject);	
		boolean	containsValue(Object	paramObject);	
	
		V	get(Object	paramObject);	

84	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
		V	put(K	paramK,	V	paramV);	
		V	remove(Object	paramObject);	
	
		void	putAll(Map<?	extends	K,	?	extends	V>	paramMap);	
		void	clear();	
	
		Set<K>	keySet();	
		Collection<V>	values();	
		Set<Entry<K,	V>>	entrySet();	
	
		boolean	equals(Object	paramObject);	
		int	hashCode();	
	
		public	static	abstract	interface	Entry<K,	V>	
		{	
				K	getKey();	
				V	getValue();	
				V	setValue(V	paramV);	
				boolean	equals(Object	paramObject);	
				int	hashCode();	
		}	
}	

What	is	difference	between	Map	and	SortedMap?	
SortedMap	interface	extends	the	Map	interface.	In	addition,	an	implementation	of	SortedMap	interface	
maintains	keys	in	a	sorted	order.	

Methods	are	available	in	the	interface	to	get	a	ranges	of	values	based	on	their	keys.	

public	interface	SortedMap<K,	V>	extends	Map<K,	V>	{	
				Comparator<?	super	K>	comparator();	
	
				SortedMap<K,	V>	subMap(K	fromKey,	K	toKey);	
	
				SortedMap<K,	V>	headMap(K	toKey);	
	
				SortedMap<K,	V>	tailMap(K	fromKey);	
	
				K	firstKey();	
	
				K	lastKey();	
}	

What	is	a	HashMap?	
HashMap	implements	Map	interface	–	there	by	supporting	key	value	pairs.	Let’s	look	at	an	example.	

HashMap	Example	
Map<String,	Cricketer>	hashmap	=	new	HashMap<String,	Cricketer>();	
hashmap.put("sachin",	
								new	Cricketer("Sachin",	14000));	
hashmap.put("dravid",	
								new	Cricketer("Dravid",	12000));	
hashmap.put("ponting",	new	Cricketer("Ponting",	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 85	

	
								11500));	
hashmap.put("bradman",	new	Cricketer("Bradman",	
								9996));	

What	are	the	different	methods	in	a	Hash	Map?	
get	method	gets	the	value	of	the	matching	key.	

System.out.println(hashmap.get("ponting"));//Ponting	11500	
	
//if	key	is	not	found,	returns	null.	
System.out.println(hashmap.get("lara"));//null	
	
If	existing	key	is	reused,	it	would	replace	existing	value	with	the	new	value	passed	in.	

//In	the	example	below,	an	entry	with	key	"ponting"	is	already	present.		
//Runs	are	updated	to	11800.	
hashmap.put("ponting",	new	Cricketer("Ponting",	
								11800));	
	
//gets	the	recently	updated	value	
System.out.println(hashmap.get("ponting"));//Ponting	11800	

What	is	a	TreeMap?	How	is	different	from	a	HashMap?	
TreeMap	is	similar	to	HashMap	except	that	it	stores	keys	in	sorted	order.	It	implements	NavigableMap	
interface	and	SortedMap	interfaces	along	with	the	Map	interface.	

Map<String,	Cricketer>	treemap	=	new	TreeMap<String,	Cricketer>();	
treemap.put("sachin",	
								new	Cricketer("Sachin",	14000));	
System.out.println(treemap);	
//{sachin=Sachin	14000}	
	
We	will	now	insert	a	Cricketer	with	key	dravid.	In	sorted	order,dravid	comes	before	sachin.	So,	the	value	
with	key	dravid	is	inserted	at	the	start	of	the	Map.	

treemap.put("dravid",	
								new	Cricketer("Dravid",	12000));	
System.out.println(treemap);	
//{dravid=Dravid	12000,	sachin=Sachin	14000}	
	
We	will	 now	 insert	 a	 Cricketer	with	 key	 ponting.	 In	 sorted	 order,	 ponting	 fits	 in	 between	 dravid	 and	
sachin.		

treemap.put("ponting",	new	Cricketer("Ponting",	
								11500));	
System.out.println(treemap);	
//{dravid=Dravid	12000,	ponting=Ponting	11500,	sachin=Sachin	14000}	
	
treemap.put("bradman",	new	Cricketer("Bradman",	
								9996));	
System.out.println(treemap);	

86	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
//{bradman=Bradman	 9996,	 dravid=Dravid	 12000,	 ponting=Ponting	 11500,	 sachin=Sachin	
14000}	

Can	you	give	an	example	of	implementation	of	NavigableMap	Interface?	
	
TreeMap	is	a	good	example	of	a	NavigableMap	interface	implementation.	Note	that	keys	in	TreeMap	are	
sorted.	

NavigableMap	is	a	SortedMap	extended	with	navigation	methods	reporting	closest	matches	for	given	
search	targets.	

interface NavigableMap<K, V> extends SortedMap<K, V> {
 Map.Entry<K, V> lowerEntry(K key);

 K lowerKey(K key);

 Map.Entry<K, V> floorEntry(K key);

 K floorKey(K key);

 Map.Entry<K, V> ceilingEntry(K key);

 K ceilingKey(K key);

 Map.Entry<K, V> higherEntry(K key);

 K higherKey(K key);

 Map.Entry<K, V> firstEntry();

 Map.Entry<K, V> lastEntry();

 Map.Entry<K, V> pollFirstEntry();

 Map.Entry<K, V> pollLastEntry();

 NavigableMap<K, V> descendingMap();

 NavigableSet<K> navigableKeySet();

 NavigableSet<K> descendingKeySet();
}	

Example	Program	
	
TreeMap<Integer,	Cricketer>	numbersTreeMap	=	new	TreeMap<Integer,	Cricketer>();	
numbersTreeMap.put(55,	new	Cricketer("Sachin",	
								14000));	
numbersTreeMap.put(25,	new	Cricketer("Dravid",	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 87	

	
								12000));	
numbersTreeMap.put(35,	new	Cricketer("Ponting",	
								12000));	
numbersTreeMap.put(5,	
								new	Cricketer("Bradman",	9996));	
numbersTreeMap	
								.put(45,	new	Cricketer("Lara",	10000));	
	
lowerKey	method	finds	the	highest	key	lower	than	specified	key.	floorKey	method	finds	the	highest	key	
lower	 than	 or	 equal	 to	 specified	 key.	 	 Corresponding	 methods	 for	 finding	 lowest	 key	 higher	 than	
specified	key	are	higher	and	ceiling.	A	few	examples	using	the	Map	created	earlier	below.	

//Find	the	highest	key	which	is	lower	than	25	
System.out.println(numbersTreeMap.lowerKey(25));//5	
	
//Find	the	highest	key	which	is	lower	than	or	equal	to	25	
System.out.println(numbersTreeMap.floorKey(25));//25	
	
//Find	the	lowest	key	higher	than	25	
System.out.println(numbersTreeMap.higherKey(25));//35	
	
//Find	the	lowest	key	higher	than	or	equal	to	25	
System.out.println(numbersTreeMap.ceilingKey(25));//25	

What	are	the	static	methods	present	in	the	Collections	class?	
• static	int	binarySearch(List,	key)		

o Can	be	used	only	on	sorted	list	
• static	int	binarySearch(List,	key,	Comparator)	
• static	void	reverse(List)	

o Reverse	the	order	of	elements	in	a	List.	
• static	Comparator	reverseOrder();	

o Return	a	Comparator	that	sorts	the	reverse	of	the	collection	current	sort	sequence.		
• static	void	sort(List)	
• static	void	sort(List,	Comparator)	

	 	

88	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Advanced	Collections	

What	 is	 the	 difference	 between	 synchronized	 and	 concurrent	 collections	 in	
Java?	
Synchronized	collections	are	 implemented	using	 synchronized	methods	and	synchronized	blocks.	Only	
one	 thread	 can	 executing	 any	 of	 the	 synchronized	 code	 at	 a	 given	 point	 in	 time.	 This	 places	 severe	
restrictions	on	 the	 concurrency	of	 threads	–	 thereby	affecting	performance	of	 the	application.	All	 the	
pre	Java	5	synchronized	collections	(HashTable	&	Vector,	for	example)	use	this	approach.	

Post	Java	5,	collections	using	new	approaches	to	synchronization	are	available	in	Java.	These	are	called	
concurrent	collections.	More	details	below.	

Explain	about	the	new	concurrent	collections	in	Java?	
Post	Java	5,	collections	using	new	approaches	to	synchronization	are	available	in	Java.	These	are	called	
concurrent	collections.	Examples	of	new	approaches	are	:	

• Copy	on	Write	
• Compare	and	Swap	
• Locks	

These	new	approaches	to	concurrency	provide	better	performance	in	specific	context’s.	We	would	
discuss	each	of	these	approaches	in	detail	below.	

Explain	about	CopyOnWrite	concurrent	collections	approach?	
Important	points	about	Copy	on	Write	approach	

• All	values	in	collection	are	stored	in	an	internal	immutable	(not-changeable)	array.	A	new	array	
is	created	if	there	is	any	modification	to	the	collection.		

• Read	operations	are	not	synchronized.	Only	write	operations	are	synchronized.	

Copy	on	Write	approach	is	used	in	scenarios	where	reads	greatly	out	number	write’s	on	a	collection.	
CopyOnWriteArrayList	&	CopyOnWriteArraySet	are	implementations	of	this	approach.	Copy	on	Write	
collections	are	typically	used	in	Subject	–	Observer	scenarios,	where	the	observers	very	rarely	change.	
Most	frequent	operations	would	be	iterating	around	the	observers	and	notifying	them.	

Example	:	CopyOnWriteArrayList	:	public	boolean	add(E	e)	

What	is	CompareAndSwap	approach?	
Compare	and	Swap	is	one	of	the	new	approaches	(Java	5)	introduced	in	java	to	handle	synchronization.		
In	 traditional	 approach,	 a	 method	 which	 modifies	 a	 member	 variable	 used	 by	 multiple	 threads	 is	
completely	synchronized	–	to	prevent	other	threads	accessing	stale	value.			

In	 compare	 and	 swap	 approach,	 instead	 of	 synchronizing	 entire	 method,	 the	 value	 of	 the	 member	
variable	 before	 calculation	 is	 cached.	 After	 the	 calculation,	 the	 cached	 value	 is	 compared	 with	 the	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 89	

	
current	value	of	member	variable.	 If	 the	value	 is	not	modified,	 the	calculated	result	 is	 stored	 into	 the	
member	 variable.	 If	 another	 thread	 has	 modified	 the	 value,	 then	 the	 calculation	 can	 be	 performed	
again.	Or	skipped	–	as	the	need	might	be.	

ConcurrentLinkedQueue	uses	this	approach.			

What	is	a	Lock?	How	is	it	different	from	using	synchronized	approach?	
CopyOnWriteArrayList	:	final	ReentrantLock	lock	=	this.lock;
When	10	methods	are	declared	as	synchronized,	only	one	of	them	is	executed	by	any	of	the	threads	at	
any	point	in	time.		This	has	severe	performance	impact.			

Another	new	approach	introduced	in	Java	5	is	to	use	lock	and	unlock	methods.	Lock	and	unlock	methods	
are	used	to	divide	methods	into	different	blocks	and	help	enhance	concurrency.	The	10	methods	can	be	
divided	into	different	blocks,	which	can	be	synchronized	based	on	different	variables.	

What	is	initial	capacity	of	a	Java	Collection?	
Extract	 from	 the	 reference	 :	 http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html.	 An	
instance	of	HashMap	has	 two	parameters	 that	affect	 its	performance:	 initial	 capacity	and	 load	 factor.	
The	capacity	is	the	number	of	buckets	in	the	hash	table,	and	the	initial	capacity	is	simply	the	capacity	at	
the	time	the	hash	table	is	created.	The	load	factor	is	a	measure	of	how	full	the	hash	table	is	allowed	to	
get	before	its	capacity	is	automatically	increased.		

When	the	number	of	entries	 in	the	hash	table	exceeds	the	product	of	 the	 load	factor	and	the	current	
capacity,	the	hash	table	is	rehashed	(that	is,	internal	data	structures	are	rebuilt)	so	that	the	hash	table	
has	approximately	twice	the	number	of	buckets.	

As	 a	 general	 rule,	 the	 default	 load	 factor	 (.75)	 offers	 a	 good	 tradeoff	 between	 time	 and	 space	 costs.	
Higher	 values	 decrease	 the	 space	 overhead	 but	 increase	 the	 lookup	 cost	 (reflected	 in	 most	 of	 the	
operations	of	the	HashMap	class,	including	get	and	put).		

The	 expected	 number	 of	 entries	 in	 the	 map	 and	 its	 load	 factor	 should	 be	 taken	 into	 account	 when	
setting	its	initial	capacity,	so	as	to	minimize	the	number	of	rehash	operations.	

What	is	load	factor?	
Refer	answer	to	Initial	Capacity	above.		

When	does	a	Java	collection	throw	UnsupportedOperationException?	
All	 Java	 Collections	 extend	 Collection	 interface.	 So,	 they	 have	 to	 implement	 all	 the	 methods	 in	 the	
Collection	 interface.	However,	certain	 Java	collections	 	are	optimized	 to	be	used	 in	specific	conditions	
and	do	not	support	all	the	Collection	operations	(methods).	 	When	an	unsupported	operation	is	called	
on	a	Collection,	the	Collection	Implementation	would	throw	an	UnsupportedOperationException.		

90	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Arrays.asList	returns	a	fixed-size	list	backed	by	the	specified	array.	When	an		attempt	is	made	to	add	or	
remove	 from	 this	 collection	 an	 UnsupportedOperationException	 is	 thrown.	 	 Below	 code	 throws	
UnsupportedOperationException.	

List<String>	list=Arrays.asList(new	String[]{"ac","bddefe"});	

list.remove();//throws	UnsupportedOperationException	

What	is	difference	between	fail-safe	and	fail-fast	iterators?	
Fail	Fast	Iterators	throw	a	ConcurrentModificationException	if	there	is	a	modification	to	the	underlying	
collection	is	modified.	This	was	the	default	behavior	of	the	synchronized	collections	of	pre	Java	5	age.	

import	java.util.HashMap;	
import	java.util.Iterator;	
import	java.util.Map;	
	
public	class	FailFast	{	
	
	 public	static	void	main(String[]	args)	{	
	 	 Map<String,	String>	map	=	new	HashMap<String,	String>();	
	 	 map.put("key1",	"value1");	
	 	 map.put("key2",	"value2");	
	 	 map.put("key3",	"value3");	
	
	 	 Iterator<String>	iterator	=	map.keySet().iterator();	
	
	 	 while	(iterator.hasNext())	{	
	 	 	 System.out.println(map.get(iterator.next()));	
	 	 	 map.put("key4",	"value4");	
	 	 }	
	
	 }	
	
}	

Fail	Safe	Iterators	do	not	throw	exceptions	even	when	there	are	changes	in	the	collection.	This	is	the	
default	behavior	of	the	concurrent	collections,	introduced	since	Java	5.		
	
Fail	Safe	Iterator	makes	copy	of	the	internal	data	structure	(object	array)	and	iterates	over	the	copied	
data	structure.	
	
Fail	Safe	is	efficient	when	traversal	operations	vastly	outnumber	mutations	
	
package	com.in28minutes.java.collections;	
	
import	java.util.Iterator;	
import	java.util.concurrent.ConcurrentHashMap;	
	
public	class	FailSafe	{	
	
	 public	static	void	main(String[]	args)	{	
	 	 ConcurrentHashMap<String,	String>	map	=	new	ConcurrentHashMap<String,	String>();	
	 	 map.put("key1",	"value1");	
	 	 map.put("key2",	"value2");	
	 	 map.put("key3",	"value3");	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 91	

	
	
	 	 Iterator<String>	iterator	=	map.keySet().iterator();	
	
	 	 while	(iterator.hasNext())	{	
	 	 	 System.out.println(map.get(iterator.next()));	
	 	 	 map.put("key4",	"value4");	
	 	 }	
	
	 }	
	
}	

What	are	atomic	operations	in	Java?	
Atomic	Access	Java	Tutorial	states	“In	programming,	an	atomic	action	is	one	that	effectively	happens	all	
at	once.	An	atomic	action	cannot	stop	in	the	middle:	it	either	happens	completely,	or	it	doesn't	happen	
at	all.	No	side	effects	of	an	atomic	action	are	visible	until	the	action	is	complete”.	

Let’s	 assume	 we	 are	 writing	 a	 multi	 threaded	 program.	 Let’s	 create	 an	 int	 variable	 i.	 	 Even	 a	 small	
operation,	like	i++	(increment),	is	not	thread	safe.	i++	operation	involves	three	steps.	

1. Read	the	value	which	is	currently	stored	in	i		
2. Add	one	to	it	(atomic	operation).		
3. Store	it	in	i	

In	a	multi-threaded	environment,	 there	 can	be	unexpected	 results.	 For	example,	 if	 thread1	 is	 reading	
the	value	(step	1)	and	immediately	after	thread2	stores	the	value	(step	3).	

To	 prevent	 these,	 Java	 provides	 atomic	 operations.	 Atomic	 operations	 are	 performed	 as	 a	 single	 unit	
without	interference	from	other	threads	ensuring	data	consistency.		

A	 good	 example	 is	 AtomicInteger.	 To	 increment	 a	 value	 of	 AtomicInteger,	 we	 use	 the		
incrementAndGet()	method.	Java	ensures	this	operation	is	Atomic.	

What	is	BlockingQueue	in	Java?	
BlockingQueue	 interface	 is	 introduced	 in	 Java	 specifically	 to	 address	 specific	 needs	 of	 some	Producer	
Consumer	scenarios.	BlockedQueue	allows	the	consumer	to	wait	(for	a	specified	time	or	infinitely)	for	an	
element	to	become	available.		

	 	

92	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Generics	

What	are	Generics?		
Generics	 are	 used	 to	 create	 Generic	 Classes	 and	 Generic	 methods	 which	 can	 work	 with	 different	
Types(Classes).	

Why	do	we	need	Generics?	Can	you	give	an	example	of	how	Generics	make	a	
program	more	flexible?	
Consider	the	class	below:	

class	MyList	{	
				private	List<String>	values;	
	
				void	add(String	value)	{	
								values.add(value);	
				}	
	
				void	remove(String	value)	{	
								values.remove(value);	
				}	
}	
	
MyList	can	be	used	to	store	a	list	of	Strings	only.	

								MyList	myList	=	new	MyList();	
								myList.add("Value	1");	
								myList.add("Value	2");	
	
To	store	 integers,	we	need	to	create	a	new	class.	This	 is	problem	that	Generics	solve.	 Instead	of	hard-
coding	String	class	as	the	only	type	the	class	can	work	with,	we	make	the	class	type	a	parameter	to	the	
class.	

Example	with	Generics	
Let’s	replace	String	with	T	and	create	a	new	class.	Now	the	MyListGeneric	class	can	be	used	to	create	a	
list	of	Integers	or	a	list	of	Strings	

class	MyListGeneric<T>	{	
				private	List<T>	values;	
	
				void	add(T	value)	{	
								values.add(value);	
				}	
	
				void	remove(T	value)	{	
								values.remove(value);	
				}	
	
				T	get(int	index)	{	
								return	values.get(index);	
				}	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 93	

	
}	
	
MyListGeneric<String>	myListString	=	new	MyListGeneric<String>();	
myListString.add("Value	1");	
myListString.add("Value	2");	
	
MyListGeneric<Integer>	myListInteger	=	new	MyListGeneric<Integer>();	
myListInteger.add(1);	
myListInteger.add(2);	
	

How	do	you	declare	a	Generic	Class?	
Note	the	declaration		of	class:	

class	MyListGeneric<T>	

Instead	of	T,	We	can	use	any	valid	identifier	

What	 are	 the	 restrictions	 in	 using	 generic	 type	 that	 is	 declared	 in	 a	 class	
declaration?	
If	a	generic	is	declared	as	part	of	class	declaration,	it	can	be	used	any	where	a	type	can	be	used	in	a	class	
-	 method	 (return	 type	 or	 argument),	 member	 variable	 etc.	 For	 Example:	 See	 how	 T	 is	 used	 as	 a	
parameter	and	return	type	in	the	class	MyListGeneric.	

How	can	we	restrict	Generics	to	a	subclass	of	particular	class?	
In	MyListGeneric,	Type	T	is	defined	as	part	of	class	declaration.	Any	Java	Type	can	be	used	a	type	for	this	
class.	 If	 we	 would	 want	 to	 restrict	 the	 types	 allowed	 for	 a	 Generic	 Type,	 we	 can	 use	 a	 Generic	
Restrictions.	Consider	the	example	class	below:	In	declaration	of	the	class,	we	specified	a	constraint	"T	
extends	 Number".	We	 can	 use	 the	 class	MyListRestricted	with	 any	 class	 extending	 (any	 sub	 class	 of)	
Number	-	Float,	Integer,	Double	etc.		

class	MyListRestricted<T	extends	Number>	{	
				private	List<T>	values;	
	
				void	add(T	value)	{	
								values.add(value);	
				}	
	
				void	remove(T	value)	{	
								values.remove(value);	
				}	
	
				T	get(int	index)	{	
								return	values.get(index);	
				}	
}	
	
MyListRestricted<Integer>	restrictedListInteger	=	new	MyListRestricted<Integer>();	

94	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
restrictedListInteger.add(1);	
restrictedListInteger.add(2);	
	
String	not	valid	substitute	for	constraint	"T	extends	Number".	

//MyListRestricted<String>	restrictedStringList	=		
//																new	MyListRestricted<String>();//COMPILER	ERROR	

How	can	we	restrict	Generics	to	a	super	class	of	particular	class?	
In	MyListGeneric,	Type	T	is	defined	as	part	of	class	declaration.	Any	Java	Type	can	be	used	a	type	for	this	
class.	 If	 we	 would	 want	 to	 restrict	 the	 types	 allowed	 for	 a	 Generic	 Type,	 we	 can	 use	 a	 Generic	
Restrictions.	 	 In	declaration	of	 the	class,	we	specified	a	constraint	 "T	 super	Number".	We	can	use	 the	
class	MyListRestricted	with	any	class	that	is	a	super	class	of	Number	class.		

Can	you	give	an	example	of	a	Generic	Method?	
A	generic	type	can	be	declared	as	part	of	method	declaration	as	well.	Then	the	generic	type	can	be	used	
anywhere	in	the	method	(return	type,	parameter	type,	local	or	block	variable	type).	

Consider	the	method	below:	

				static	<X	extends	Number>	X	doSomething(X	number){	
								X	result	=	number;	
								//do	something	with	result	
								return	result;	
				}	
	

The	method	can	now	be	called	with	any	Class	type	extend	Number.	

Integer	i	=	5;	
Integer	k	=	doSomething(i);	

	 	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 95	

	
Multi	Threading	

What	is	the	need	for	Threads	in	Java?	
Threads	allow	Java	code	to	run	in	parallel.	Let’s	look		at	an	example	to	understand	what	we	can	do	with	
Threads.	

Need	for	Threads	
We	are	creating	a	Cricket	Statistics	Application.	Let's	say	the	steps	involved	in	the	application	are	

• STEP	I:	Download	and	Store	Bowling	Statistics	=>	60	Minutes	
• STEP	II:	Download	and	Store	Batting	Statistics	=>	60	Minutes	
• STEP	III:	Download	and	Store	Fielding	Statistics	=>	15	Minutes	
• STEP	IV:	Merge	and	Analyze	=>	25	Minutes	

Steps	I,	II	and	III	are	independent	and	can	be	run	in	parallel	to	each	other.	Run	individually	this	program	
takes	160	minutes.		We	would	want	to	run	this	program	in	lesser	time.	Threads	can	be	a	solution	to	this	
problem.	Threads	allow	us	to	run	STEP	I,	II	and	III	in	parallel	and	run	Step	IV	when	all	Steps	I,	II	and	III	are	
completed.	

Below	example	shows	the	way	we	would	write	code	usually	–	without	using	Threads.		

ThreadExamples	example	=	new	ThreadExamples();									
example.downloadAndStoreBattingStatistics();	
example.downloadAndStoreBowlingStatistics();	
example.downloadAndStoreFieldingStatistics();	
	
example.mergeAndAnalyze();	
	
downloadAndStoreBowlingStatistics	 starts	 only	 after	 downloadAndStoreBattingStatistics	 completes	
execution.	 downloadAndStoreFieldingStatistics	 starts	 only	 after	 downloadAndStoreBowlingStatistics	
completes	execution.	What	if	I	want	to	run	them	in	parallel	without	waiting	for	the	others	to	complete?	

This	 is	where	Threads	come	into	picture.	Using	Multi-Threading	we	can	run	each	of	the	above	steps	in	
parallel	and	synchronize	when	needed.	We	will	understand	more	about	synchronization	later.	

How	do	you	create	a	thread?	
Creating	 a	 Thread	 class	 in	 Java	 can	 be	 done	 in	 two	 ways.	 Extending	 Thread	 class	 and	 implementing	
Runnable	 interface.	 Let’s	 create	 the	 BattingStatisticsThread	 extending	 Thread	 class	 and	
BowlingStatisticsThread	implementing	Runnable	interface.	

How	do	you	create	a	thread	by	extending	Thread	class?	
Thread	class	can	be	created	by	extending	Thread	class	and	implementing	the	public	void	run()	method.	

Look	 at	 the	 example	 below:	 A	 dummy	 implementation	 for	 BattingStatistics	 is	 provided	which	 counts	
from	1	to	1000.	

96	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
class	BattingStatisticsThread	extends	Thread	{	
				//run	method	without	parameters	
				public	void	run()	{	
								for	(int	i	=	0;	i	<	1000;	i++)	
												System.out	
												.println("Running	Batting	Statistics	Thread	"	
																												+	i);	
				}	
}	

How	do	you	create	a	thread	by	implementing	Runnable	interface?	
Thread	 class	 can	 also	 be	 created	 by	 implementing	 Runnable	 interface	 and	 implementing	 the	method	
declared	 in	Runnable	 interface	“public	void	 run()”.	Example	below	shows	 the	Batting	Statistics	Thread	
implemented	by	implementing	Runnable	interface.	

class	BowlingStatisticsThread	implements	Runnable	{	
				//run	method	without	parameters	
				public	void	run()	{	
								for	(int	i	=	0;	i	<	1000;	i++)	
												System.out	
												.println("Running	Bowling	Statistics	Thread	"	
																												+	i);	
				}	
}	

How	do	you	run	a	Thread	in	Java?	
Running	a	Thread	in	Java	is	slightly	different	based	on	the	approach	used	to	create	the	thread.	

Thread	created	Extending	Thread	class	
When	using	 inheritance,	 An	 object	 of	 the	 thread	needs	 be	 created	 and	 start()	method	on	 the	 thread	
needs	to	be	called.	Remember	that	the	method	that	needs	to	be	called	is	not	run()	but	it	is	start().	

BattingStatisticsThread	battingThread1	=	new	BattingStatisticsThread();	
battingThread1.start();	

Thread	created	implementing	RunnableInterface.		
Three	steps	involved.	

• Create	an	object	of	the	BowlingStatisticsThread(class	implementing	Runnable).	
• Create	a	Thread	object	with	the	earlier	object	as	constructor	argument.	
• Call	the	start	method	on	the	thread.	

BowlingStatisticsThread	battingInterfaceImpl	=	new	BowlingStatisticsThread();	
Thread	battingThread2	=	new	Thread(
								battingInterfaceImpl);	
battingThread2.start();	

What	are	the	different	states	of	a	Thread?	
Different	states	that	a	thread	can	be	in	are	defined	the	class	State.	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 97	

	
• NEW;	
• RUNNABLE;	
• RUNNING;	
• BLOCKED/WAITING;	
• TERMINATED/DEAD;	

Let’s	consider	the	example	that	we	discussed	earlier.	

Example	Program	
LINE	1:	BattingStatisticsThread	battingThread1	=	new	BattingStatisticsThread();	
LINE	2:	battingThread1.start();	
	
LINE	3:	BowlingStatisticsThread	battingInterfaceImpl	=	new	BowlingStatisticsThread();	
LINE	4:	Thread	battingThread2	=	new	Thread(battingInterfaceImpl);	
LINE	5:battingThread2.start();	

Description	
A	thread	is	in	NEW	state	when	an	object	of	the	thread	is	created	but	the	start	method	is	not	yet	called.	
At	the	end	of	line	1,	battingThread1	is	in	NEW	state.	

A	thread	is	in	RUNNABLE	state	when	it	is	eligible	to	run,	but	not	running	yet.	(A	number	of	Threads	can	
be	 in	 RUNNABLE	 state.	 Scheduler	 selects	 which	 Thread	 to	 move	 to	 RUNNING	 state).	 In	 the	 above	
example,	 sometimes	 the	 Batting	 Statistics	 thread	 is	 running	 and	 at	 other	 time,	 the	 Bowling	 Statistics	
Thread	 is	 running.	When	Batting	Statistics	 thread	 is	Running,	 the	Bowling	Statistics	 thread	 is	 ready	 to	
run.	 It’s	 just	 that	 the	scheduler	picked	Batting	Statistics	 thread	 to	 run	at	 that	 instance	and	vice-versa.		
When	Batting	Statistics	thread	is	Running,	the	Bowling	Statistics	Thread	is	in	Runnable	state	(Note	that	
the	Bowling	Statistics	Thread	is	not	waiting	for	anything	except	for	the	Scheduler	to	pick	it	up	and	run	it).	

A	thread	is	RUNNING	state	when	it’s	the	one	that	is	currently	,	what	else	to	say,	Running.	

A	 thread	 is	 in	 BLOCKED/WAITING/SLEEPING	 state	when	 it	 is	 not	 eligible	 to	 be	 run	 by	 the	 Scheduler.	
Thread	is	alive	but	is	waiting	for	something.	An	example	can	be	a	Synchronized	block.	If	Thread1	enters	
synchronized	 block,	 it	 blocks	 all	 the	 other	 threads	 from	 entering	 synchronized	 code	 on	 the	 same	
instance	or	class.	All	other	threads	are	said	to	be	in	Blocked	state.	

A	thread	is	in	DEAD/TERMINATED	state	when	it	has	completed	its	execution.	Once	a	thread	enters	dead	
state,	it	cannot	be	made	active	again.	

What	is	priority	of	a	thread?	How	do	you	change	the	priority	of	a	thread?	
Scheduler	can	be	requested	to	allot	more	CPU	to	a	thread	by	increasing	the	threads	priority.	Each	thread	
in	Java	is	assigned	a	default	Priority	5.	This	priority	can	be	increased	or	decreased	(Range	1	to	10).	

If	two	threads	are	waiting,	the	scheduler	picks	the	thread	with	highest	priority	to	be	run.	If	all	threads	
have	equal	priority,	the	scheduler	then	picks	one	of	them	randomly.	Design	programs	so	that	they	don't	
depend	on	priority.	

98	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Thread	Priority	Example	
Consider	the	thread	example	declared	below:	

class	ThreadExample	extends	Thread	{	
				public	void	run()	{	
								for	(int	i	=	0;	i	<	1000;	i++)	
												System.out	
																				.println(this.getName()	+	"	Running	"	
																												+	i);	
				}	
}	
	
Priority	of	thread	can	be	changed	by	invoking	setPriority	method	on	the	thread.	

ThreadExample	thread1	=	new	ThreadExample();	
thread1.setPriority(8);	
	
Java	 also	 provides	 predefined	 constants	 Thread.MAX_PRIORITY(10),	 Thread.MIN_PRIORITY(1),	
Thread.NORM_PRIORITY(5)	which	can	be	used	to	assign	priority	to	a	thread.	

What	is	ExecutorService?	
The	java.util.concurrent.ExecutorService	interface	is	a	new	way	of	executing	tasks	asynchronously	in	the	
background.	An	ExecutorService	is	very	similar	to	a	thread	pool.	

Can	you	give	an	example	for	ExecutorService?	
Below	 example	 shows	 how	 to	 create	 an	 Executor	 Service	 and	 use	 it	 to	 run	 a	 task	 implementing	 the	
Runnable	interface.	

 ExecutorService executorService = Executors.newSingleThreadExecutor();

 executorService.execute(new Runnable() {
 public void run() {
 System.out.println("From ExecutorService");
 }
 });

 System.out.println("End of Main");

 executorService.shutdown();
	

Explain	different	ways	of	creating	Executor	Services.	
There	 are	 three	 ways	 of	 creating	 executor	 services.	 Below	 example	 shows	 the	 three	 different	 ways.	
executorService1	 can	 execute	 one	 task	 at	 a	 time.	 executorService2	 can	 execute	 10	 tasks	 at	 a	 time.	
executorService3	can	execute	tasks	after	certain	delay	or	periodically.	

 // Creates an Executor that uses a single worker thread operating off an
 // unbounded queue.
 ExecutorService executorService1 = Executors.newSingleThreadExecutor();

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 99	

	
 // Creates a thread pool that reuses a fixed number of threads
 // operating off a shared unbounded queue. At any point, the parameter
 // specifies the most threads that will be active processing tasks.

 ExecutorService executorService2 = Executors.newFixedThreadPool(10);

 // Creates a thread pool that can schedule commands to run after a
 // given delay, or to execute periodically.
 ExecutorService executorService3 = Executors.newScheduledThreadPool(10);
	

How	do	you	check	whether	an	ExecutionService	task	executed	successfully?	
We	can	use	a	Future	to	check	the	return	value.	Below	example	shows	how	it	can	be	done.	Future	get	
method	would	return	null	if	the	task	finished	successfully.	

 Future future = executorService1.submit(new Runnable() {
 public void run() {
 System.out.println("From executorService1");
 }
 });

 future.get(); // returns null if the task has finished correctly.
	

What	is	Callable?	How	do	you	execute	a	Callable	from	ExecutionService?	
Runnable	interface's	run	method	has	a	return	type	void.	So,	it	cannot	return	any	result	from	executing	a	
task.	However,	a	Callable	 interface's	call	method	has	a	 return	 type.	 If	you	have	multiple	 return	values	
possible	 from	 a	 task,	 we	 can	 use	 the	 Callable	 interface.	 Example	 shows	 how	 to	 create	 a	 Callable	
interface	and	execute	it	using	an	executor	service.	The	return	value	is	printed	to	the	output.	

 Future futureFromCallable = executorService1.submit(new Callable() {
 public String call() throws Exception {
 return "RESULT";
 }
 });

 System.out.println("futureFromCallable.get() = "
 + futureFromCallable.get());

What	is	synchronization	of	threads?	
Since	 Threads	 run	 in	 parallel,	 a	 new	 problem	 arises.	 What	 if	 thread1	 modifies	 data	 which	 is	 being	
accessed	by	thread2?	How	do	we	ensure	that	different	threads	don’t	leave	the	system	in	an	inconsistent	
state?	This	problem	is	usually	called	synchronization	problem.	

Let’s	 first	 look	at	 an	example	where	 this	problem	can	occur.	Consider	 the	 code	 in	 the	 setAndGetSum	
method.	

int	setandGetSum(int	a1,	int	a2,	int	a3)	{	

100	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
				cell1	=	a1;	
				sleepForSomeTime();	
				cell2	=	a2;	
				sleepForSomeTime();	
				cell3	=	a3;	
				sleepForSomeTime();	
				return	cell1	+	cell2	+	cell3;	
}	
	
If	following	method	is	running	in	two	different	threads,	funny	things	can	happen.	After	setting	the	value	
to	each	cell,	there	is	a	call	for	the	Thread	to	sleep	for	some	time.	After	Thread	1	sets	the	value	of	cell1,	it	
goes	to	Sleep.	So,	Thread2	starts	executing.	If	Thread	2	is	executing	“return	cell1	+	cell2	+	cell3;”,	it	uses	
cell1	 value	 set	by	Thread	1	and	 cell2	 and	 cell3	 values	 set	by	Thread	2.	 This	 results	 in	 the	unexpected	
results	that	we	see	when	the	method	is	run	in	parallel.	What	is	explained	is	one	possible	scenario.	There	
are	several	such	scenarios	possible.	

The	way	you	can	prevent	multiple	threads	from	executing	the	same	method	is	by	using	the	synchronized	
keyword	 on	 the	 method.	 If	 a	 method	 is	 marked	 synchronized,	 a	 different	 thread	 gets	 access	 to	 the	
method	only	when	there	is	no	other	thread	currently	executing	the	method.	

Let’s	mark	the	method	as	synchronized:	

synchronized	int	setandGetSum(int	a1,	int	a2,	int	a3)	{	
				cell1	=	a1;	
				sleepForSomeTime();	
				cell2	=	a2;	
				sleepForSomeTime();	
				cell3	=	a3;	
				sleepForSomeTime();	
				return	cell1	+	cell2	+	cell3;	
}	

Can	you	give	an	example	of	a	synchronized	block?	
All	code	which	goes	into	the	block	is	synchronized	on	the	current	object.	

				void	synchronizedExample2()	{	
								synchronized	(this){	
								//All	code	goes	here..	
								}	
				}	

Can	a	static	method	be	synchronized?		
Yes.	Consider	the	example	below.	

				synchronized	static	int	getCount(){	
								return	count;	
				}	
	
Static	methods	and	block	are	synchronized	on	the	class.	Instance	methods	and	blocks	are	synchronized	
on	 the	 instance	 of	 the	 class	 i.e.	 an	 object	 of	 the	 class.	 Static	 synchronized	 methods	 and	 instance	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 10

1		
synchronized	methods	don’t	affect	each	other.	This	 is	because	they	are	synchronized	on	two	different	
things.	

				static	int	getCount2(){	
								synchronized	(SynchronizedSyntaxExample.class)	{	
												return	count;	
								}	
				}	

What	is	the	use	of	join	method	in	threads?	
Join	method	is	an	instance	method	on	the	Thread	class.	Let's	see	a	small	example	to	understand	what	
join	method	does.	

Let’s	consider	the	thread's	declared	below:	thread2,	thread3,	thread4	

ThreadExample	thread2	=	new	ThreadExample();	
ThreadExample	thread3	=	new	ThreadExample();	
ThreadExample	thread4	=	new	ThreadExample();	
	
Let’s	say	we	would	want	to	run	thread2	and	thread3	in	parallel	but	thread4	can	only	run	when	thread3	
is	finished.	This	can	be	achieved	using	join	method.	

Join	method	example	
Look	at	the	example	code	below:	

thread3.start();	
thread2.start();	
thread3.join();//wait	for	thread	3	to	complete	
System.out.println("Thread3	is	completed.");	
thread4.start();	
	
thread3.join()	 method	 call	 force	 the	 execution	 of	 main	 method	 to	 stop	 until	 thread3	 completes	
execution.	After	that,	thread4.start()	method	is	invoked,	putting	thread4	into	a	Runnable	State.	

Overloaded	Join	method	
Join	method	also	has	an	overloaded	method	accepting	time	in	milliseconds	as	a	parameter.		

thread4.join(2000);	
In	 above	 example,	main	method	 thread	would	wait	 for	 2000	ms	 or	 the	 end	 of	 execution	 of	 thread4,	
whichever	is	minimum.	

Describe	a	few	other	important	methods	in	Threads?	

Thread	yield	method	
Yield	is	a	static	method	in	the	Thread	class.	It	is	like	a	thread	saying	"	I	have	enough	time	in	the	limelight.	
Can	some	other	thread	run	next?".		

102	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
A	 call	 to	 yield	 method	 changes	 the	 state	 of	 thread	 from	 RUNNING	 to	 RUNNABLE.	 However,	 the	
scheduler	might	pick	up	the	same	thread	to	run	again,	especially	if	it	is	the	thread	with	highest	priority.	

Summary	 is	yield	method	 is	a	 request	 from	a	thread	to	go	to	Runnable	state.	However,	 the	scheduler	
can	immediately	put	the	thread	back	to	RUNNING	state.	

Thread	sleep	method	
sleep	is	a	static	method	in	Thread	class.	sleep	method	can	throw	a	InterruptedException.	sleep	method	
causes	the	thread	in	execution	to	go	to	sleep	for	specified	number	of	milliseconds.	

What	is	a	deadlock?	
Let’s	 consider	 a	 situation	 where	 thread1	 is	 waiting	 for	 thread2	 (thread1	 needs	 an	 object	 whose	
synchronized	 code	 is	 being	 executed	by	 thread1)	 and	 thread2	 is	waiting	 for	 thread1.	 This	 situation	 is	
called	a	Deadlock.	In	a	Deadlock	situation,	both	these	threads	would	wait	for	one	another	for	ever.	

What	are	the	important	methods	in	java	for	inter-thread	communication?	
Important	methods	are	wait,	notify	and	notifyAll.	

What	is	the	use	of	wait	method?	
Below	 snippet	 shows	 how	 wait	 is	 used.	 wait	 method	 is	 defined	 in	 the	 Object	 class.	 This	 causes	 the	
thread	to	wait	until	it	is	notified.	

synchronized(thread){	
				thread.start();	
				thread.wait();	
}	

What	is	the	use	of	notify	method?	
Below	snippet	shows	how	notify	 is	used.	notify	method	 is	defined	 in	 the	Object	class.	This	causes	 the	
object	to	notify	other	waiting	threads.	

synchronized	(this)	{0	
								calculateSumUptoMillion();	
								notify();	
				}	

What	is	the	use	of	notifyAll	method?	
If	more	than	one	thread	is	waiting	for	an	object,	we	can	notify	all	the	threads	by	using	notifyAll	method.	

thread.notifyAll();	

Can	you	write	a	synchronized	program	with	wait	and	notify	methods?	
package	com.rithus.threads;	
	
class	Calculator	extends	Thread	{	
				long	sumUptoMillion;	
				long	sumUptoTenMillion;	
	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 10

3		
				public	void	run()	{	
								synchronized	(this)	{	
												calculateSumUptoMillion();	
												notify();	
								}	
								calculateSumUptoTenMillion();	
				}	
	
				private	void	calculateSumUptoMillion()	{	
								for	(int	i	=	0;	i	<	1000000;	i++)	{	
												sumUptoMillion	+=	i;	
								}	
								System.out.println("Million	done");	
				}	
	
				private	void	calculateSumUptoTenMillion()	{	
								for	(int	i	=	0;	i	<	10000000;	i++)	{	
												sumUptoTenMillion	+=	i;	
								}	
								System.out.println("Ten	Million	done");	
				}	
}	
	
public	class	ThreadWaitAndNotify	{	
				public	static	void	main(String[]	args)	throws	InterruptedException	{	
								Calculator	thread	=	new	Calculator();	
								synchronized(thread){	
												thread.start();	
												thread.wait();	
								}	
								System.out.println(thread.sumUptoMillion);	
				}	
}	
	

Output	
Million	done	
499999500000	
Ten	Million	done	
	

	 	

104	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Functional	Programming	-	Lamdba	Expressions	and	Streams	

What	is	functional	programming?	
Functional	programming	is	a	programming	paradigm—a	style	of	building	the	structure	and	elements	of	
computer	programs—that	treats	computation	as	the	evaluation	of	mathematical	functions	and	avoids	
changing-state	and	mutable	data.	

	

Can	you	give	an	example	of	functional	programming?	
	
	 @Test	
	 public	void	sumOfOddNumbers_Usual()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 int	sum	=	0;	
	 	 for	(int	number	:	numbers)	
	 	 	 if	(number	%	2	!=	0)	
	 	 	 	 sum	+=	number;	
	 	 assertEquals(11,	sum);	
	 }	
	
	 @Test	
	 public	void	sumOfOddNumbers_FunctionalProgrammingExample()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 int	sum	=	numbers.stream().filter(Test123::isOdd).reduce(0,	
	 	 	 	 Integer::sum);	
	 	 assertEquals(11,	sum);	
	 }	
	
	 static	boolean	isOdd(int	number)	{	
	 	 return	number	%	2	!=	0;	
	 }	

What	is	a	Stream?	
A	Stream	is	a	source	of	objects.	In	the	above	example,	we	created	a	stream	from	List.	

Streams	have	Intermediate	Operations	and	Terminal	Operations.	In	the	example	above,	we	used	filter	as	
intermediate	operation	and	reduce	as	a	terminal	operation.	

Explain	about	streams	with	an	example?	
Streams	are	introduced	in	Java	8.	In	combination	with	Lambda	expressions,	they	attempt	to	bring	some	
of	the	important	functional	programming	concepts	to	Java.	

A	stream	is	a	sequence	of	elements	supporting	sequential	and	parallel	aggregate	operations.	Consider	
the	example	code	below.	Following	steps	are	done:	

• Step	I			:	Creating	an	array	as	a	stream	
• Step	II		:	Use	Lambda	Expression	to	create	a	filter	
• Step	III	:		Use	map	function	to	invoke	a	String	function	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 10

5		
• Step	IV	:		Use	sorted	function	to	sort	the	array	
• Step	V		:		Print	the	array	using	forEach	

Arrays.stream(new String[] {
 "Ram", "Robert", "Rahim"
})
 .filter(s - > s.startsWith("Ro"))
 .map(String::toLowerCase)
 .sorted()
	 .forEach(System.out::println);	

	

In	general	any	use	of	streams	involves	

• Source	-	Creation	or	use	of	existing	stream	:	Step	I	above	
• Intermediate	Operations	-	Step	II,	III	and	IV	above.	Intermediate	Operations	return	a	new	stream	
• Terminal	Operation	–	Step	V.	Consume	the	stream.	Print	it	to	output	or	produce	a	result	

(sum,min,max	etc).	

Intermediate	Operations	are	of	two	kinds	

• Stateful			:		Elements	need	to	be	compared	against	one	another	(sort,	distinct	etc)	
• Stateless	:		No	need	for	comparing	with	other	elements	(map,	filter	etc)	

What	are	Intermediate	Operations	in	Streams?	
An	Intermediate	Operation	on	a	Stream	returns	another	Stream.	

106	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
Examples	:	map,	filter,	distinct,	sorted.	

Distinct	Example	
	 @Test	
	 public	void	streamExample_Distinct()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	1,	2,	6,	2,	3);	
	 	 numbers.stream().distinct().forEach(System.out::print);	
	 	 //	1263	
	 }	
	

Sorted	Example	
	 @Test	
	 public	void	streamExample_Sorted()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	1,	2,	6,	2,	3);	
	 	 numbers.stream().sorted().forEach(System.out::print);	
	 	 //	112236	
	 }	
	

Filter	Example	
	 @Test	
	 public	void	streamExample_Filter()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 numbers.stream().filter(Test123::isOdd).forEach(System.out::print);	
	 	 //137	
	 }	

What	are	Terminal	Operations	in	Streams?	
Terminal	Operation	either	produce	a	result	or	create	a	side	effect.	

reduce	is	used	to	cumulate	elements.	

	 @Test	
	 public	void	sumOfOddNumbers_FunctionalProgramming()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 int	sum	=	numbers.stream().filter(Test123::isOdd).reduce(0,	
	 	 	 	 Integer::sum);	
	 	 assertEquals(11,	sum);	
	 }	
	

forEach	is	used	to	create	a	side	effect.	Print	to	Output.	Store	to	database.		

	 @Test	
	 public	void	streamExample_Filter()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 numbers.stream().filter(Test123::isOdd).forEach(System.out::print);	
	 	 //137	
	 }	
	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 10

7		
collect	is	used	to	group	elements	to	a	collection	

	 @Test	
	 public	void	streamExample_Collect()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 List<Integer>	oddNumbers	=	numbers.stream().filter(Test123::isOdd)	
	 	 	 	 .collect(Collectors.toList());	
	 	 System.out.println(oddNumbers);	
	 	 //	[1,	3,	7]	
	 }	

What	are	Method	References?	
Integer::sum,	System.out::print	in	the	above	examples	are	method	references.	These	two	are	simple	
static	methods	which	are	used	instead	of	Lambda	Expressions.	

	

What	are	Lambda	Expressions?	
A	lambda	expression	is	an	anonymous	function.	Simply	put,	it's	a	method	without	a	declaration.	There	
will	be	no	access	modifiers,	no	return	value	declaration,	and	no	name.	It's	a	shorthand	that	allows	you	to	
write	a	method	in	the	same	place	you	are	going	to	use	it.	Especially	useful	in	places	where	a	method	is	
being	used	only	once,	and	the	method	definition	is	short.		

Syntax	:	Parameters	->	Executed	code	

Can	you	give	an	example	of	Lambda	Expression?	
In	the	example	below,	number	->	System.out.print(number)	is	a	lambda	expression.	

	 @Test	
	 public	void	lambdaExpression_simpleExample()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 numbers.stream().filter(Test123::isOdd).forEach(
	 	 	 	 number	->	System.out.print(number));	
	 	 //	137	
	 }	

Can	you	explain	the	relationship	between	Lambda	Expression	and	Functional	
Interfaces?	
Look	at	the	earlier	example	:		Function	we	passed	in	is	number	->	System.out.print(number).	Input	to	
this	function	is	number.	The	function	consumes	it	and	prints	it	to	the	output.		

forEach	function	has	an	interface	-	void	java.util.stream.Stream.forEach(Consumer<T>	action)	

The	JavaDoc	for	java.util.function.Consumer<T>	reads	-	@FunctionalInterface	:	Represents	an	operation	
that	accepts	a	single	input	argument	and	returns	no	result.	Unlike	most	other	functional	interfaces,	
Consumer	is	expected	to	operate	via	side-effects.		

108	 Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 	
	
When	ever	we	create	a	Lambda	Expression,	we	are	defining	a	function	which	implements	a	pre-
defined/custom	defined	Functional	Interface.		

What	is	a	Predicate?	
	

@FunctionalInterface	
public	interface	Predicate<T>	{	
	 boolean	test(T	t);	
}	

	 @Test	
	 public	void	lambdaExpression_predicate()	{	
	 	 List<Integer>	numbers	=	Arrays.asList(1,	3,	4,	6,	2,	7);	
	 	 numbers.stream().filter((number)	->	(number	%	2	!=	0)).forEach(
	 	 	 	 number	->	System.out.print(number));	
	 	 //	137	
	 }	
	

(number)	->	(number	%	2	!=	0)	is	a	Predicate.	Takes	an	argument	and	returns	true	of	false.	

Signature	of	filter	function	:	Stream<T>	java.util.stream.Stream.filter(Predicate<?	super	T>	predicate).	
filter	returns	a	stream	consisting	of	the	elements	of	this	stream	that	match	the	given	predicate.		

What	is	the	functional	interface	-	Function?	
@FunctionalInterface	
public	interface	Function<T,	R>	{	
	 R	apply(T	t);	
}	

What	is	a	Consumer?	
@FunctionalInterface	
public	interface	Consumer<T>	{	
	 void	accept(T	t);	
}	

Can	you	give	examples	of	functional	interfaces	with	multiple	arguments?	
@FunctionalInterface	
public	interface	BiFunction<T,	U,	R>	{	
R	apply(T	t,	U	u);	
}	

	 	

	

Java	Interview	Questions	and	Answers	–	www.in28Minutes.com	 10

9		
New	Features	

What	are	the	new	features	in	Java	5?	
• Generics	
• Enhanced	for	Loop	
• Autoboxing/Unboxing	
• Varargs	
• Static	Import	
• Concurrent	Collections	

o Copy	on	Write	
o Compare	and	Swap	

• Locks	

What	are	the	new	features	in	Java	6?	
Java	6	has	very	few	important	changes	in	terms	of	api’s.	There	are	a	few	performance	improvements	but	
none	significant	enough	to	deserve	a	mention.	

What	are	the	new	features	in	Java	7?	
• Diamond	Operator.		

o Example	:	Map<String	,	List	<Trade>>	trades	=	new	TreeMap	<>	();	
• Using	String	in	switch	statements	
• Automatic	resource	management		

o try(resources_to_be_cleant){	//	your	code	}	
• Numeric	literals	with	underscores	
• Improved	exception	handling		

o Multiple	catches	in	same	block	
o catch(ExceptionOne	|	ExceptionTwo	|	ExceptionThree	e)	

What	are	the	new	features	in	Java	8?	
Java	8	brought	in	a	number	of	important	new	features.	

• Lamda	Expressions.	Example	:	Runnable	java8Runner	=	()	->	{	sop("I	am	running");	};	
• Nashorn	:	javascript	engine	that	enables	us	to	run	javascript	to	run	on	a	jvm	
• String.join()	function	
• Streams	

