
Quick Start

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

Kylix™ 3
Delphi™ and C++ for Linux®

Refer to the DEPLOY document located in the root directory of your Kylix product for a complete list of files that you
can distribute in accordance with the Kylix License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 2001–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE7030WW21000 3E3R0702
0203040506-9 8 7 6 5 4 3 2 1
D3

Contents

Chapter 1
Introduction 1-1
What is Kylix? 1-1
Registering Kylix. 1-2
Finding information 1-3

Online Help 1-4
F1 Help . 1-4

Developer support services and Web site 1-6
Typographic conventions 1-6

Chapter 2
A tour of the environment 2-1
Starting Kylix . 2-1
The IDE . 2-1
The menus and toolbars. 2-3
The Component Palette, Form Designer,

and Object Inspector 2-4
The Object TreeView 2-5
The Object Repository 2-5
The Code Editor 2-7

Code Insight 2-7
Class Completion for Delphi 2-8

Code Browsing 2-9
The Diagram page 2-9
Viewing form code 2-10

The Code Explorer 2-11
The Project Manager 2-12
The Project Browser 2-12

To-do lists . 2-13

Chapter 3
Programming with Kylix 3-1
Creating a project 3-1

Adding data modules 3-2
Building the user interface 3-2

Placing components on a form 3-2

Setting component properties 3-3
Writing code . 3-5

Writing event handlers 3-5
Using the CLX libraries 3-6

Compiling and debugging projects 3-6
Deploying applications. 3-8
Internationalizing applications 3-8
Types of projects 3-8

Web server applications 3-8
Database applications. 3-9
Custom components 3-10
Shared objects 3-10

Chapter 4
Customizing the desktop 4-1
Organizing your work area 4-1

Arranging menus and toolbars 4-1
Docking tool windows 4-3
Saving desktop layouts 4-5

Customizing the Component palette 4-5
Arranging the Component palette. 4-6
Creating component templates 4-6
Installing component packages 4-7

Using frames 4-8
Setting project options 4-8
Specifying project and form templates

as the default. 4-9
Adding templates to the Object

Repository 4-9
Setting tool preferences. 4-10

Customizing the Form Designer. 4-10
Customizing the Code Editor 4-11
Customizing the Code Explorer 4-11

Index I-1
iii

iv

C h a p t e r

1
Chapter1Introduction

This Quick Start provides an overview of the Kylix development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Kylix.

Chapter 2, “A tour of the environment,” describes the main tools on the Kylix
desktop, or integrated desktop environment (IDE). Chapter 3, “Programming with
Kylix” explains how you use some of these tools to create an application. Chapter 4,
“Customizing the desktop” describes how you can customize the Kylix IDE for your
development needs.

What is Kylix?
Kylix is an object-oriented, visual programming environment for rapid application
development (RAD). Using Kylix, you can create highly efficient applications for
Linux servers and workstations with a minimum of manual coding. Kylix provides
all the tools you need to develop, test, and deploy applications in both the Delphi and
C++ programming languages, including a large library of reusable components, a
suite of design tools, application and form templates, and programming wizards.
I n t r o d u c t i o n 1-1

R e g i s t e r i n g K y l i x
Registering Kylix
Kylix can be registered in several ways. The first time you launch Kylix after
installation, you will be prompted to enter your serial number and authorization key.
Once this has been entered, a registration dialog offers four choices:

• Register using your internet connection.

Use this option to register online using your existing internet connection.

• Register by phone or Web browser.

Use this option to register by phone or through your web browser. If you received
an activation key via email, use this option to select the file.

• Import software activation information from a file or email.

• Register later.

Online registration is the easiest way to register Kylix, but it requires that you have
an active connection to the internet. If you are already a member of the Borland
Community, or have an existing software registration account, simply enter the
relevant account information. This will automatically register Kylix. If not, the
registration process provides a way to create an account.
1-2 Q u i c k S t a r t

F i n d i n g i n f o r m a t i o n
The second option (register by phone or Web page) is useful if the machine you are
installing on is not connected to the internet, or if you are behind a firewall that is
blocking online registration.

If you have previously received software activation information, you can select the
Import software activation information from a file or email option and select the
activation.slip file on your system.

Note Unless you have a specific reason not to, use the online registration option.

Finding information
You can find information on Kylix in the following ways:

• Online Help
• Printed documentation
• Borland developer support services and Web site

For information about new features in this release, refer to What’s New in the online
Help Contents and to the www.borland.com Web site.
I n t r o d u c t i o n 1-3

F i n d i n g i n f o r m a t i o n
Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Borland
Component Library for Cross-Platform (CLX). It includes all the material in the Kylix
Developer’s Guide, Delphi Language Guide, and a host of Help files for other features
bundled with Kylix.

To view the table of contents, choose the first item under the Help menu and click the
Contents tab. To look up CLX objects or any other topic, click the Index or Find tab
and type your request.

F1 Help

By selecting an item and pressing F1 you can get context-sensitive Help on CLX
objects and any part of the development environment including menu items, dialog
boxes, toolbars, and components.

Press F1 on a property or
event name in the Object
Inspector to display CLX
Help.

In the Code Editor, press
F1 on a language, or CLX
element.
1-4 Q u i c k S t a r t

F i n d i n g i n f o r m a t i o n
Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Error messages from the compiler and linker appear in a special window below the
Code Editor. To get Help with compilation errors, select a message from the list and
press F1.

Press F1 on a
component on a form.

Press F1 on any
menu command,
dialog box or window
to display Help on
that item.
I n t r o d u c t i o n 1-5

D e v e l o p e r s u p p o r t s e r v i c e s a n d W e b s i t e
Developer support services and Web site
Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http://www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where Kylix developers
exchange information, tips, and techniques. The site also includes a list of books
about Kylix, additional Kylix technical documents, and Frequently Asked Questions
(FAQs).

Typographic conventions
This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Kylix identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

The Delphi printed icon represents Delphi programming language text and
code examples.

The C++ printed icon represents C++ programming language text and code
examples.
1-6 Q u i c k S t a r t

C h a p t e r

2
Chapter2A tour of the environment

This chapter explains how to start Kylix and gives you a quick tour of the main parts
and tools of the integrated development environment (IDE).

Starting Kylix
You can start Kylix in the following ways:

• In either KDE or Gnome, open the start menu, choose Borland Kylix 3 and select
either the C++ or the Delphi version of Kylix.

• From the bin directory of your Kylix installation, type ./startdelphi (Delphi
language IDE) or ./startbcb (C++ IDE).

The IDE
When you first start Kylix, you’ll see some of the major tools in the IDE. In Kylix, the
IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code Editor, Project Manager, and many other tools. The particular
features and components available to you will depend on which edition of Kylix
you’ve purchased.
A t o u r o f t h e e n v i r o n m e n t 2-1

T h e I D E
Note The previous and subsequent examples show Kylix 3 using the Delphi Language
Integrated Development Environment (IDE). This guide will note when there are
significant differences between the Delphi and C++ environments.

Kylix’s development model is based on two-way tools. This means that you can move
back and forth between visual design tools and text-based code editing. For example,
after using the Form Designer to arrange buttons and other elements in a graphical
interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Kylix
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, compile, test, debug,
and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see “Customizing the desktop”
on page 4-1.

The Component palette
contains ready-made
components to add to
your projects.

Code Editor displays
code to view and edit.

The Form Designer
contains a blank form on
which to start designing
the user interface for your
application. An application
can include several forms.

The Code Explorer (Delphi Language Only) shows you the
classes, variables, and routines in your unit and lets you

The Object Inspector
is used to change objects’
properties and select event
handlers.

The Object TreeView displays a
hierarchical view of your components’
parent-child relationships.

The menus and toolbars access a host of features
and tools to help you write an application.
2-2 Q u i c k S t a r t

T h e m e n u s a n d t o o l b a r s
The menus and toolbars
The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

Kylix’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 4-1 and “Saving desktop layouts” on page 4-5.

For more information...
If you need help on any menu option, point to it and press F1.

Main window in
its default
arrangement.

You can use the right-click
menu to hide any toolbar. To
display a toolbar if it’s not
showing, choose View|Toolbars
and check the one you want.

To find out what a button does,
point to it for a moment until a
tooltip appears.

Run

Open
project

Save all Add file
to project

Open

Save

New
form

Remove
file from
projectNew

Toggle
form/unit

View
form

View
unit

Standard toolbar

Pause

Trace
into

Step over

View toolbar

Debug toolbar

List of projects
you can run

Desktops toolbar

Name of saved
desktop layout

Set debug
desktop

Save current
desktop

New WebSnap
Page Module

New WebSnap
Data Module

External
Editor

Internet toolbar

New WebSnap
Application
A t o u r o f t h e e n v i r o n m e n t 2-3

T h e C o m p o n e n t P a l e t t e , F o r m D e s i g n e r , a n d O b j e c t I n s p e c t o r
The Component Palette, Form Designer, and Object Inspector
The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing
visual or nonvisual CLX components. The pages divide the components into various
functional groups. For example, the Standard, Additional, and Common Controls
pages include controls such as an edit box and up/down button; the Dialogs page
includes common dialog boxes to use for file operations such as opening and saving
files.

Each component has specific attributes (properties, events, and methods) that enable
you to control your application.

After you place components on the form you can arrange components the way they
should look on your user interface. For the components you place on the form, use
the Object Inspector to set design-time properties, create event handlers, and filter
visible properties and events. See “Placing components on a form” on page 3-2.

For more information...
See “Component palette” in the online Help index.

Component palette pages, grouped by function

Components

Click to view
more pages

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.
2-4 Q u i c k S t a r t

T h e O b j e c t T r e e V i e w
The Object TreeView
The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and CheckBox component to your form, the
two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the CheckBox becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can double-click any object in the tree diagram to open
the Code Editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View|Object TreeView.

The Object TreeView is especially useful for displaying the relationships between
database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository
The Object Repository contains forms, dialog boxes, data modules, wizards, shared
libraries, sample applications, and other items that can simplify development.
Choose File|New|Other to display the New Items dialog box when you begin a

The Object TreeView,
Object Inspector, and the
Form Designer work
together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11 to focus
on the Object TreeView.
A t o u r o f t h e e n v i r o n m e n t 2-5

T h e O b j e c t R e p o s i t o r y
project. The New Items dialog box is the same as the Object Repository. Check the
Repository to see if it contains an object that resembles one you want to create.

To edit or remove objects from the Object Repository, either choose Tools|Repository
or right-click in the New Items dialog box and choose Properties.

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 4-9.

For more information...
See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Kylix you purchased.

The Repository’s tabbed pages include
objects like forms, frames, units, and
wizards to create specialized items.

When you’re creating an item based on
one from the Object Repository, you
can copy, inherit, or use the item:

Copy (the default) creates a copy of
the item in your project. Inherit means
changes to the object in the Repository
are inherited by the one in your project.
Use means changes to the object in
your project are inherited by the object
in the Repository.

You can add, remove, or
rename tabbed pages from
the Object Repository.

Click the arrows to change
the order in which a tabbed
page appears in the New
Items dialog box.
2-6 Q u i c k S t a r t

T h e C o d e E d i t o r
The Code Editor
As you design the user interface for your application, Kylix generates the underlying
code. When you select and modify the properties of forms and objects, your changes
are automatically reflected in the source files. You can add code to your source files
directly using the built-in Code Editor, which is a full-featured ASCII editor. Kylix
provides various aids to help you write code, including the Code Insight tools, class
completion, and code browsing.

Code Insight
The Code Insight tools display context-sensitive pop-up windows.

Tool How it works

Code completion For the C++ IDE, type the name of a variable that represents a
pointer to an object followed by an arrow (->) or that represents
a non-CLX object followed by a dot.
For the Delphi IDE, type a class name followed by a dot (.) to
display a list of properties, methods, and events appropriate to
the class, select it, and press Enter. In the interface section of
your code you can select more than one item.
Type the beginning of an assignment statement and press
Ctrl+spacebar to display a list of valid values for the variable. Type
a procedure, function, or method name to bring up a list of
arguments.

Code parameters Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

Tooltip expression evaluation While your program has paused during debugging, point to any
variable to display its current value.

Components added to
the form are reflected
in the code.

Generated
code.
A t o u r o f t h e e n v i r o n m e n t 2-7

T h e C o d e E d i t o r
To turn these tools on or off, choose Tools|Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Class Completion for Delphi

In the Delphi language IDE, class completion generates skeleton code for classes.
Place the cursor anywhere within a class declaration of the interface section of a unit
and press Ctrl+Shift+C or right-click and choose Complete Class at Cursor. Kylix
automatically adds private read and write specifiers to the declarations for any
properties that require them, then creates skeleton code for all the class’s methods.
You can also use class completion to fill in class declarations for methods you’ve
already implemented.

To turn on class completion, choose Tools|Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

Tooltip symbol insight While editing code, point to any identifier to display its
declaration.

Code templates Press Ctrl+J to see a list of common programming statements that
you can insert into your code. You can create your own
templates in addition to the ones supplied with Kylix.

Tool How it works

With code completion, when you reference a
member of an object (with a . in Delphi or a ->
in C++) Kylix displays a list of properties,
methods, and events for the class. As you
type, the list automatically filters to the
selection that pertains to that class. Select an
item on the list and press Enter to add it to
your code.

Procedures and properties are colored as teal
and functions as blue.

You can sort this list alphabetically by right-
clicking and clicking Sort by Name.

The tooltip symbol insight displays declaration
information for any identifier when you pass
the mouse over it.
2-8 Q u i c k S t a r t

T h e C o d e E d i t o r
Code Browsing
While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrl and the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code Editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code Editor keeps track of where you’ve been in
the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

To customize your code editing environment, see “Customizing the Code Editor” on
page 4-11.

For more information...
See “Code Editor” in the online Help index.

The Diagram page

The bottom of the Code Editor may contain one or more tabs, depending on which
edition of Kylix you have. The Code page, where you write all your code, appears in
the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if

Click the back arrow to
return to the last place
you were working in
your code. Then click
the forward arrow to
move forward again.

Press Ctrl and click or right-click and click
Find Declaration to jump to the definition
of the identifier.

The Code editor maintains a list of the
definitions you jumped to.
A t o u r o f t h e e n v i r o n m e n t 2-9

T h e C o d e E d i t o r
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four
connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Viewing form code

Forms are a very visible part of most Kylix projects—they are where you design the
user interface of an application. Normally, you design forms using Kylix‘s visual
tools, and Kylix stores the forms in form files. Form files (.dfm) describe each
component in your form, including the values of all persistent properties. To view
and edit a form file in the Code Editor, right-click the form and select View as Text.
To return to the graphic view of your form, right-click and choose View as Form.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
for each type of relationship.

Click the Comment block
button to add a comment,
and the Allude connector
button to draw a connection
to another comment or icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you’ve named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.
2-10 Q u i c k S t a r t

T h e C o d e E x p l o r e r
You can save form files in either text (the default) or binary format. Choose Tools|
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

The Code Explorer
When you open Kylix, the Code Explorer is docked to the left of the Code Editor
window, depending on whether the Code Explorer is available in the edition of Kylix
you have. The Code Explorer displays the table of contents as a tree diagram for the
source code open in the Code Editor, listing the types, classes, properties, methods,
global variables, and routines defined in your unit. It also shows the other units listed
in the uses clause.

You can use the Code Explorer to navigate in the Code Editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code Editor.

Use View As Text
to view a text
description of the
form’s attributes in
the Code Editor.

Double-click an item in the Code
Explorer and the cursor moves to
that item’s implementation in the
Code Editor. Press Ctrl+Shift+E to
move the cursor back and forth
between the last place you were in
the Code Explorer and Code Editor.

Each item in the Code Explorer has
an icon that designates its type.
A t o u r o f t h e e n v i r o n m e n t 2-11

T h e P r o j e c t M a n a g e r
To configure how the Code Explorer displays its contents, choose Tools|
Environment Options and click the Explorer tab.

For more information...
See “Code Explorer” in the online Help index.

The Project Manager
When you first start Kylix, it automatically opens a new project. A project includes
several files that make up the application or shared object you are going to develop.
You can view and organize these files—such as form, unit, resource, object, and
library files—in a project management tool called the Project Manager. To display the
Project Manager, choose View|Project Manager.

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 4-8.

For more information...
See “Project Manager” in the online Help index.

The Project Browser
In the Delphi IDE, the Project Browser examines a project in detail. The Browser
displays classes, units, and global symbols (types, properties, methods, variables,
and routines) your project declares or uses in a tree diagram. Choose View|Browser
to display the Project Browser.
2-12 Q u i c k S t a r t

T o - d o l i s t s
By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools|Environment Options, and on the Explorer page, check All symbols.

For more information...
See “Project Browser” in the online Help index.

To-do lists
To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items
directly in the source code. Choose View|To-Do List to add or view information
associated with a project.

For more information...
See “to-do lists” in the online Help index.

The Project Browser has two
resizeable panes: the
Inspector pane (on the left)
and the Details pane. The
Inspector pane has three tabs
for globals, classes, and units.

Globals displays classes,
types, properties, methods,
variables, and routines.

Classes displays classes in a
hierarchical diagram.

Units displays units, identifiers
declared in each unit, and the
other units that use and are
used by each unit.

Right-click on a to-do list to
display commands that let you
sort and filter the list.

Click the check
box when you’re
done with an item.
A t o u r o f t h e e n v i r o n m e n t 2-13

2-14 Q u i c k S t a r t

C h a p t e r

3
Chapter3Programming with Kylix

The following sections provide an overview of software development with Kylix,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project
A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Kylix, a new project
opens. The Delphi IDE automatically generates a project file (Project1.dpr), unit file
(Unit1.pas), and resource file (Unit1.dfm; Unit1.xfm for CLX applications), among
others. The C++ IDE produces Project1.bpr, Unit1.cpp, and Unit1.h along with the
form files.

If a project is already open but you want to open a new one, choose either File|New|
Application or File|New|Other and double-click the Application icon. File|New|
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or shared object. To read about what types of projects you can develop
with Kylix, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.
P r o g r a m m i n g w i t h K y l i x 3-1

B u i l d i n g t h e u s e r i n t e r f a c e
Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File|New|Data Module. Kylix opens an empty data
module, which displays an additional unit file for the module in the Code
EditorCode Editor, and adds the module to the current project as a new unit. Add
nonvisual components to a data module in the same way as you would to a form.

When you reopen an existing data module, Kylix displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface
With Kylix, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, do one of the following:

• Double-click the component.

• Click the component once and then click the form where you want the component
to appear.

• Select the component and drag it to wherever you want on the form.

• Choose View|Component list from the main window, select a component, and
click the Add to form button.

Double-click a nonvisual
component on the Component
palette to place the component in
the data module.
3-2 Q u i c k S t a r t

B u i l d i n g t h e u s e r i n t e r f a c e
For more information...
See “Component palette” in the online Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Click a component on the Component palette.

Then click where you want to place it on the form.
Or choose a component from
an alphabetical list.
P r o g r a m m i n g w i t h K y l i x 3-3

B u i l d i n g t h e u s e r i n t e r f a c e
Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you’ll see an ellipsis. For some
properties, such as size, enter a value.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenu1, which
displays all of the pop-up menu’s properties.

Or use this drop-down list to
select an object. Here,
Form1 is selected, and its
properties are displayed.

You can also click a plus sign to open a detail list.

Select a property and
change its value in the
right column.

Click an ellipsis to open
a dialog box where you
can change the
properties of a helper
object.

You can select a
component, or object, on
the form by clicking on it.

Double-click here to
change the value from
True to False.

Click any ellipsis to
display a property
editor for that property.

Click on the down
arrow to select from a
list of valid values.
3-4 Q u i c k S t a r t

W r i t i n g c o d e
For more information...
See “Object Inspector” in the online Help index.

Writing code
An integral part of any application is the code behind each component. While Kylix’s
RAD environment provides most of the building blocks for you, such as preinstalled
visual and nonvisual components, you will usually need to write event handlers,
methods, and perhaps some of your own classes. To help you with this task, you can
choose from thousands of objects in Kylix’s CLX class libraries. To work with your
source code, see “The Code Editor” on page 2-7.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Set the Button
component’s
PopupMenu property
to PopupMenu1, and
all of the popup
menu’s properties
appear when you
click the plus sign (+).

Inline component
references are
colored red, and their
subproperties are
colored green.
P r o g r a m m i n g w i t h K y l i x 3-5

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s
For more information...
See “events” in the online Help index.

Using the CLX libraries

Kylix comes with the Borland Component Library for Cross-Platform (CLX) which is
made up of sublibraries of objects, some of which are also components or controls,
that you use when writing code. These libraries include objects that are visible at
runtime—such as edit controls, buttons, and other user interface elements—as well
as nonvisual controls like datasets and timers. Objects descended from TComponent
have properties and methods that allow them to be installed on the Component
palette and added to Kylix forms and data modules. Because CLX components are
hooked into the IDE, you can use tools like the Form Designer to develop
applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a CLX button control,
you don’t have to write code to handle generated events when the button is clicked;
you are responsible only for the application logic that executes in response to the
click itself.

For more information...
See “CLX Reference” in the Help contents and in the online Help index.

Compiling and debugging projects
After you have written your code, you will need to compile and debug your project.
With Kylix, you can either compile your project first and then separately debug it, or
you can compile and debug in one step using the integrated debugger. To compile

Select an existing event
handler from the drop-
down list.

Or double-click in the
value column, and Kylix
generates skeleton code
for the new event
handler.

Here, Button1 is selected and its type is displayed: TButton.
Click the Events tab in the Object Inspector to see the
events that the Button component can handle.
3-6 Q u i c k S t a r t

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s
your program with debug information, choose Project|Options, click the Compiler
page, and make sure Debug information is checked.

Kylix uses an integrated debugger so that you can control program execution, watch
variables, and modify data values. You can step through your code line by line,
examining the state of the program at each breakpoint. To use the integrated
debugger, choose Tools|Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run|Run, or pressing F9.

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View|Debug Windows. Not all debugger
views are available in all editions of Kylix.

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 4-3.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 4-5.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Run button

Choose any of the
debugging commands from
the Run menu. Some
commands are also available
on the toolbar.

You can combine several
debugging windows for
easier use.
P r o g r a m m i n g w i t h K y l i x 3-7

D e p l o y i n g a p p l i c a t i o n s
Deploying applications
You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, shared objects, package files, and helper applications.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications
Kylix offers several features for internationalizing and localizing applications. The
IDE and CLX support input method editors (IMEs) and extended character sets to
internationalize your project.

For more information...
See “international applications” in the online Help index.

Types of projects
All editions of Kylix support general-purpose 32-bit Linux programming, Shared
Objects, packages, custom components, multithreading, and multiprocess
debugging. Some editions support server applications such as Web server
applications, database applications, multi-tiered applications, CORBA, and decision-
support systems.

For more information...
To see what tools your edition supports, refer to the feature list on
www.borland.com.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, Kylix includes two different technologies, depending on what edition of Kylix
you have.

Kylix’s oldest Web server application technology is called Web Broker. Web Broker
applications can dispatch requests, perform actions, and return Web pages to users.
Most of the business logic of an application is defined in event handlers written by
the application developer. To create a Web Broker Web server application, choose
File|New|Other and double-click the Web Server Application icon. You can add
components to your Web module from the Component palette page.
3-8 Q u i c k S t a r t

T y p e s o f p r o j e c t s
WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. These extra features are
designed to handle common Web server application tasks automatically. WebSnap
development is more visual and simple than Web Broker development. A WebSnap
application developer can spend more time designing the business logic of an
application, and less time writing event handlers for common page transfer tasks. To
create a new WebSnap server application, select File|New|Other, click the WebSnap
page, and double-click the Web Server Application icon. You can add WebSnap
components from the WebSnap Component palette page.

For more information...
See “Web applications” in the online Help index.

Database applications

Kylix offers a variety of database and connectivity tools to simplify the development
of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding
pages of the following connectivity tools:

• dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, InterBase, MySQL,
and Oracle. With a dbExpress driver, you can access databases using
unidirectional datasets.

• Certain database connectivity tools are not available in all editions of Kylix.

You can create an
application to run on
various Web server
application types,
including a test server to
help you debug your Web
server application.

Choose whether you
want a data module or a
page module, which
displays your HTML page
as you work.

You can also access the
WebSnap Application data
module by choosing View|
Toolbars|Internet, and
clicking the New WebSnap
Application icon.
P r o g r a m m i n g w i t h K y l i x 3-9

T y p e s o f p r o j e c t s
For more information...
See “database applications” in the online Help index.

Custom components

The components that come with Kylix are preinstalled on the Component palette and
offer a range of functionality that should be sufficient for most of your development
needs. You could program with Kylix for years without installing a new component,
but you may sometimes want to solve special problems or display particular kinds of
behavior that require custom components. Custom components promote code reuse
and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component|New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 4-7.

For more information...
See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

Shared objects

Shared Objects are compiled modules containing routines that can be called by
applications and by other Shared objects. A Shared object contains code or resources
typically used by more than one application. Choose File|New|Other and double-
click the Shared object Wizard icon to create a template for a Shared Object.

For more information...
See “Shared objects” in the online Help index.
3-10 Q u i c k S t a r t

C h a p t e r

4
Chapter4Customizing the desktop

This chapter explains some of the ways you can customize the tools in Kylix IDE.

Organizing your work area
The IDE provides many tools to support development, so you’ll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move menus and toolbars within the main window. Drag the
grabber (the vertical bar on the left) of an individual toolbar to move it.
C u s t o m i z i n g t h e d e s k t o p 4-1

O r g a n i z i n g y o u r w o r k a r e a
You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

You can add or delete tools from the toolbars by choosing View|Toolbars|
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

For more information...
See “toolbars, customizing” in the online Help index.

Main window in its
default arrangement.

Main window
organized differently

Main window with
parts separated.

On the Commands
page, select any
command and drag it
onto any toolbar.

On the Options page,
click Show tooltips to
make sure the hints for
components and
toolbar icons appear.
4-2 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a
Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open the Delphi Language IDE in its default
configuration, the Code Explorer is docked to the left of the Code Editor. You can
add the Project Manager to the first two to create three docked windows.

To get docked windows with
grabbers, release the
mouse when the drag
outline snaps to the
window’s corner.
C u s t o m i z i n g t h e d e s k t o p 4-3

O r g a n i z i n g y o u r w o r k a r e a
To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.
The two windows snap together.You can also dock tools to form tabbed windows.

To undock a window, double-click its grabber or tab, or click and drag the tab
outside of the docking area.

Here the Project Manager and Object
Inspector are docked to the Code Editor.

You can combine, or
“dock” windows with
either grabbers, as on
the right, or tabs.

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window’s corner.
4-4 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e
To turn off automatic docking, either press the Ctrl key while moving windows
around the screen, or choose Tools|Environment Options, click the Preferences page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

On the Desktops toolbar, click the Save current desktop icon or choose
View|Desktops|Save Desktop, and enter a name for your new layout.

For more information...
See “desktop layout” in the online Help index.

Customizing the Component palette
In its default configuration, the Component palette displays many useful CLX objects
organized functionally onto tabbed pages. You can customize the Component palette
by:

• Hiding or rearranging components.
• Adding, removing, rearranging, or renaming pages.
• Creating component templates and adding them to the palette.
• Installing new components.

Set debug
desktop

Save current
desktop

Named desktop
settings are listed here.

Enter a name for the desktop layout
you want to save and click OK.
C u s t o m i z i n g t h e d e s k t o p 4-5

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e
Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

• Choose Component|Configure Palette.
• Choose Tools|Environment Options and click the Palette tab.
• Right-click the Component palette and choose Properties.

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component|Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

You can rearrange the palette
and add new pages.
4-6 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special shared object containing code that can be shared among Kylix
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
Kylix packages have a .bpl extension.

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component|Install Packages.

For more information...
See “installing components” and “packages” in the online Help index.

These components come preinstalled
in Kylix. When you install new
components from third-party vendors,
their package appears in this list.

Click Components to see what
components the package contains.
C u s t o m i z i n g t h e d e s k t o p 4-7

S e t t i n g p r o j e c t o p t i o n s
Using frames
A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File|New|Frame.

For more information...
See “frames” and “TFrame” in the Help index.

Setting project options
If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project|Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file.

For more information...
See “Project Options dialog box” in the online Help index.

You can add whatever visual
or nonvisual components
you need to the frame. A new
unit is automatically added to
the Code Editor.
4-8 Q u i c k S t a r t

S p e c i f y i n g p r o j e c t a n d f o r m t e m p l a t e s a s t h e d e f a u l t
Specifying project and form templates as the default
When you choose File|New|Application, Kylix creates a standard new application
with an empty form, unless you specify a project template as your default project. You
can save your own project as a template in the Object Repository on the Projects page
by choosing Project|Add to Repository. Or you can choose from one of Kylix’s
existing project templates from the Object Repository (see “The Object Repository”
on page 2-5).

To specify a project template as the default, choose Tools|Repository. In the Object
Repository dialog box, under Pages, select Projects. If you’ve saved a project as a
template on the Projects page, it appears in the Objects list. Select the template name,
check New Project, and click OK.

Once you’ve specified a project template as the default, Kylix opens it automatically
whenever you choose File|New|Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File|New|Form to add
an additional form to an open project. The default main form is the form created
when you open a new application. If you haven’t specified a default form, Kylix uses
a blank form.

You can override your default project or form temporarily by choosing File|New|
Other and selecting a different template from the New Items dialog box.

For more information...
See “templates, adding to Object Repository,” “projects, specifying default,” and
“forms, specifying default” in the online Help index.

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of

The Object Repository’s pages
contain project templates only,
form templates only, or a
combination of both.

To set a project template as the
default, select an item in the
Objects list and check New
Project.

To set a form template as the
default, select an item in the
Objects list and check New Form
or Main Form.
C u s t o m i z i n g t h e d e s k t o p 4-9

S e t t i n g t o o l p r e f e r e n c e s
applications with common user interfaces and functionality that reduces
development time and improves quality.

For example, to add a project to the Repository as a template, first save the project
and choose Project|Add To Repository. Complete the Add to Repository dialog box.

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Kylix, see “Specifying project and form templates as
the default” on page 4-9.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences
You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools|Environment Options.

For more information...
See “Environment Options dialog box” in the online Help index, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools|Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...
In the Environment Options dialog box, click the Designer page and click the Help
button.

Enter a title, description,
and author. In the Page list
box, choose Projects so that
your project will appear on
the Repository’s Projects
tabbed page.
4-10 Q u i c k S t a r t

S e t t i n g t o o l p r e f e r e n c e s
Customizing the Code Editor

One tool you may want to customize right away is the Code Editor. Several pages in
the Tools|Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-7.

For more information...
In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start the Delphi IDE, the Code Explorer (described in “ The Code
Explorer” on page 2-11) opens automatically. If you don’t want Code Explorer to
open automatically, choose Tools|Environment Options, click the Explorer tab, and
uncheck Automatically show Explorer.

You can change the way the Code Explorer’s contents are grouped within the Code
Explorer by right-clicking in the Code Explorer, choosing Properties, and, under
Explorer categories, checking and unchecking the check boxes. If a category is
checked, elements in that category are grouped under a single node. If a category is
unchecked, each element in that category is displayed independently on the
diagram’s trunk. For example, if you uncheck the Published category, the Published
folder disappears but not the items in it.

For more information...
See “Code Explorer, Environment options” in the online Help index.

In the Code Explorer, you
can sort all source elements
alphabetically or in the order
in which they are declared
in the source file.

To display the folder for
each type of source
element in the Code
Explorer, check an
Explorer category.
C u s t o m i z i n g t h e d e s k t o p 4-11

4-12 Q u i c k S t a r t

Index

A
adding items to Object Repository 2-5
applications

compiling and debugging 3-6
creating 3-1
database 3-9
deploying 3-8
internationalizing 3-8
Web server 3-8

B
Browser 2-12

C
character sets, extended 3-8
Class Completion 2-8, 4-11
ClassExplorer 2-11
CLX 2-4
code

event handlers 3-5
help in writing 2-7 to 2-8
viewing and editing 2-7 to 2-12
writing 3-5

code completion 2-7
Code Editor

combining with other windows 4-3
customizing 4-11
using 2-7 to 2-9

Code editor
customizing 4-11

Code Explorer
customizing 4-11
using 2-11

Code Parameters 2-7
Code Templates 2-8
compiling applications 3-6
Component palette

adding custom components 3-10
adding pages 4-6
customizing 4-5 to 4-7
defined 2-4
using 3-2

component templates, creating 4-6
components

adding to a form 3-2
adding to Component palette 4-6
arranging on Component palette 4-6
creating custom 3-10
customizing 3-10, 4-6

installing 3-10, 4-7
setting properties 3-3

context menus, accessing 2-3
controls, adding to a form 3-2
customizing

Code Editor 4-11
Code Explorer 4-11
Component palette 2-3
Form Designer 4-10

D
data modules

adding 3-2
database applications, creating 3-9
dbExpress 3-9
debugging programs 3-6 to 3-7
default

project and form templates 4-9
project options 4-8

deploying applications 3-8
desktop

organizing 4-1 to 4-5
saving layouts 4-5

developer support 1-6
.dfm files 2-10
Diagram page 2-9
docking windows 4-3 to 4-5

E
Editor Options dialog box 2-8, 4-11
Environment Options dialog box 2-8, 4-10
event handlers, defined 3-5

F
files, form 2-10
Form Designer, customizing 4-10
form files, viewing code 2-10
forms

adding components to 3-2
main 4-9
specifying as default 4-9

frames 4-8

G
global symbols 2-12

H
Help, F1 1-4
I n d e x I-1

I
IDE

defined 1-1
organizing 4-1
tour of 2-1

IMEs 3-8
information, finding 1-3
input method editors 3-8
installing custom components 4-7
integrated debugger 3-7
integrated development environment (IDE)

tour of 2-1
internationalizing applications 3-8

K
keystroke mappings 4-11

L
localizing applications 3-8

M
main form, defined 4-9
menus

context 2-3
in C++Builder 2-3
organizing 2-3, 4-1

N
new features 1-3
new form, defined 4-9
New Items dialog box

saving templates to 4-9, 4-10
using 2-5

newsgroups 1-6

O
Object Inspector

defined 2-4
inline component references 3-4
using 3-3 to 3-4

Object Repository
adding templates to 4-9
defined 2-5, 3-1
using 2-5 to 2-6

Object TreeView 2-5
objects, defined 3-6
online Help files 1-4
options, setting for projects 4-8

P
packages 4-7
parent-child relationships 2-5
programs

compiling and debugging 3-6
deploying 3-8
internationalizing 3-8
Web server applications 3-8

Project Browser 2-12 to 2-13
project groups 2-12
Project Manager 2-12
Project Options dialog box 4-8
project templates 4-9
projects

adding items to 2-5
creating 3-1
managing 2-12
setting options as default 4-8
specifying as default 4-9
types 3-8 to 3-10

properties, setting 3-3

R
right-click menus 2-3
running an application 3-6

S
saving desktop layouts 4-5
setting properties 3-3
source code

help in writing 2-7 to 2-8
SQL database servers 3-9
support services 1-6

T
tabbed windows, docking 4-4
technical support 1-6
templates

adding to Object Repository 4-9
specifying as default 4-9

to-do lists 2-13
tool windows, docking 4-3
toolbars 2-3

adding and deleting components from 4-2
organizing 4-1

Tooltip Expression Evaluation 2-7
Tooltip Symbol Insight 2-8
Typographic conventions 1-6
typographic conventions 1-6
I-2 Q u i c k S t a r t

U
user interfaces, creating 3-2

W
Web server applications, creating 3-8
Web site, Borland 1-6

WebSnap, introduction 3-8
windows, combining 4-3
Writing code 3-5

X
.xfm files 2-10
I n d e x I-3

I-4 Q u i c k S t a r t

	Quick Start
	Contents
	Introduction
	What is Kylix?
	Registering Kylix
	Finding information
	Online Help
	F1 Help

	Developer support services and Web site
	Typographic conventions

	A tour of the environment
	Starting Kylix
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	Class Completion for Delphi
	The Diagram page
	Viewing form code

	�The Code Explorer
	The Project Manager
	�The Project Browser
	To-do lists

	Programming with Kylix
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the CLX libraries

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	Web server applications
	Database applications
	Custom components
	Shared objects

	Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor
	Customizing the Code Explorer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

