Choices, Choices

by Joanna Carter

In my last article, I looked at designing a generic form that can be derived from for editing a single object of a given class. In this article I will look at the provision of a lookup mechanism, similar to a Combo Box, that can be used for choosing an object from a list.

If we were going to use data-aware controls, then we would more than likely use something like TDBLookupComboBox to give us a list of records from a lookup table, from which a list value could be chosen and a key value assigned to the foreign key field. But we are not using data-aware controls; in fact we are not using records from a table.

Foreign Objects

So how do we manage ‘foreign keys’ in a OO world? If we take the scenario where all objects are dealt with purely in memory, without the need to make them persistent, then, in the example of an Order for a Customer, the Customer property of the Order would be a pointer to the correct Customer object; however, we somehow have to ‘memorise’ this pointer from one day to the next, even if we turn the computer off.

We all know that it would be highly unlikely for a memory address to point to the same variable every time that we turn a computer on and start a program; in fact we would be fortunate to find the same value at the same address if we were to open the same program twice without turning the computer off. So how do we go about making a memory pointer persistent?

Well, if you look back at the article where we discussed TPDObject, you will see that every object has a unique ID; this consists of a Class ID and an Object ID. If you look at a memory pointer, you can determine what type of variable is stored at the address and the contents of the address by de-referencing the pointer. So Class ID can be said to be analogous to the type of variable and Object ID to the contents of the pointer.

Now we can’t use the actual numbers that make up the address in memory, because, as we have said, these cannot be guaranteed to be the same twice running. So we generated a Class ID from a central register of classes and an Object ID from a mechanism in the database that is capable of generating unique numbers. The result is a single number that contains both the Class and Object IDs and it is this that we use to store a reference to the Customer as a ‘foreign object’ within our Order example.

It is understood that any object that is referred to from within another object has to exist before it can be referenced; therefore, to store that reference, all that is required is to find that object in memory and to place its address into the holding object’s pointer. Storing that pointer involves taking the ID of that object previously discussed and storing that in the persistence mechanism, rather than just the memory pointer. The converse situation occurs when we want to get the memory pointer of an object that has not yet been created in memory; we have an ID for the object, but that will not give us a memory address. We need to create a Customer object whose ID matches the Customer ID that we stored in the Order object.

Now the only way to retrieve an object whose ID we do not know from an Object Store is to create a collection of that type of object and supply criteria that identify the object or objects that you want to find and, of course, such a ‘query’ could only return a single object. But because we already have the ID of the Customer, we can tell our newly created Customer object to retrieve itself and the Object Store will know where to find the details of that Customer based on the object’s Class ID and Object ID; in much the same way as a memory manager finds the contents of a pointer.

To clarify : an object is recognised by its pointer in memory but by its ID in storage; the relationship between these two concepts is handled automatically by the Object Store and should not concern us. From a point of view of handling objects within a program, we are purely concerned with using the memory addresses. In dealing with the Customer object that is referred to by our Order object, we simply tell the Order object the address of the Customer object; should we wish to change Customers then we simply assign a different Customer to the pointer in the Order, when we tell the Order to Store itself, the ‘address’ of the correct Customer will be stored ready for the next time we need to view the Order object.

Now we know how the Order object knows which Customer has been assigned to it, but how do we tell the Order object which Customer to refer to in the first place? Within the context of a form based application, we need to allow a user to choose from a list of possible Customers, usually by providing a visual chooser such as a drop-down list box. But what if there are millions of Customers to choose from?

Limited Choice

The first time you use a drop-down list box, you would have to wait for the drop-down list to be populated, and this could give an unacceptable delay, especially if there were many thousands of items to add. The TDBLookupComboBox appears to react very quickly… until you try to go to the last item in a list produced from a query; then it is time to go and make a cup of tea while you wait! Anyway the TDBLookupComboBox isn’t really a ‘proper’ Combo Box, it is actually a TDBEdit plus a TDBGrid in a special floating window.

Some Combo Boxes allow you to use an incremental search, so that, as you type the list moves to the item nearest to the string that has been typed in the edit portion of the control, but you would still have to load up the drop-down list first. In the case of a TDBLookupComboBox, incremental searching can be handled by using FindNearest on the dataset. However you use these standard drop-down metaphor controls, you still have to realise that a large amount of database and/or network traffic will be generated to fill a ‘simple’ list.

I decided that I would not allow my users to browse millions of objects, just to find the correct one. It is unusual for a user not to know something about a ‘lookup’ and so I designed a generic search form that allows a user to type in part of a criteria and that will return a collection of objects whose string property begins with that text. I have limited the properties that can be used to string properties, because that tends to be so in the majority of cases.

The Search Begins

Whether you are going to design a custom Combo Box or a Search Dialog, you will need to be able to display a list of Objects for browsing purposes. TListView is an ideal component for displaying a list of objects, especially if you do not want to have to fill the entire list before browsing. TListView has an OwnerData property. This allows you to fill up the list only as and when the user scrolls down to an area that has not been seen before. You tell the list how many objects it will ultimately have by setting the Items.Count, thus setting the scrollbar proportions correctly. There is also an event which tells you when data is required and for which row. I have therefore designed a derived TListView which knows all about TPDCollection (my collection class) and requests objects only when they need to be used.

TPDListView = class(TListView)

 private

 fCollection: TPDCollection;

 fViewProperties: TListViewProperties;

We start off by declaring two private fields: one for the collection that we are going to browse and another for an object that defines which columns we want to display. I have used this mechanism as a temporary measure until I can write custom property editors that will take the place of the default TListColumn properties at design time.

 procedure CollectionConnected(Sender: TObject);

 procedure CollectionDestroying(Sender: TObject);

 procedure CollectionDisconnected(Sender: TObject);

 procedure CollectionViewChanged(Sender: TObject);

Next come four event handlers necessary for detecting when the collection changes state; I will discuss these later.

 procedure SetCollection(Value : TPDCollection);

 procedure SetViewProperties(const Value: TListViewProperties);

The remaining private methods are simply mutator methods for the extra properties.

 protected

 function OwnerDataFetch(Item: TListItem; Request: TItemRequest): Boolean; override;

 function OwnerDataHint(StartIndex, EndIndex: Integer): Boolean; override;

As I mentioned earlier, TListView supplies events that we can handle to supply items for the list on an as required basis. However if we were simply to assign our custom handlers to these events within a derived class, it would be possible for someone using our component to assign a different handler to these events in the IDE thereby stopping our custom handlers from being called. With this in mind we need to find the methods of TListView that call these events and override those instead.

 public

 constructor Create(AOwner: TComponent); override;

 destructor Destroy; override;

 property Collection : TPDCollection

 read fCollection

 write SetCollection;

 property ViewProperties: TListViewProperties

 read fViewProperties

 write SetViewProperties;

 end;

The rest of the class declaration requires no explanation here, the constructor and destructor are shown here:

constructor TPDListView.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 fViewProperties := TListViewProperties.Create;

end;

destructor TPDListView.Destroy;

begin

 fViewProperties.Free;

 inherited Destroy;

end;

Driven by Events

procedure TPDListView.CollectionConnected(Sender: TObject);

begin

 if Sender = fCollection then

 begin

The CollectionConnected event handler is called when the Collection is connected to the underlying Object Store, but as yet no objects will have normally been retrieved. The TListViewProperties class is a collection of ‘column’ descriptions that has three properties: CurrentAlignment, CurrentCaption and CurrentWidth. We iterate through fViewProperties, creating a column in the List View for each of these sets of properties.

 with fViewProperties do

 begin

 First;

 while not IsDone do

 begin

 with inherited Columns.Add do

 begin

 Alignment := CurrentAlignment;

 Caption := CurrentCaption;

 Width := CurrentWidth;

 end;

 Next;

 end;

 end;

It is at this point that we can determine how many objects are available in the Object Store and set the Items.Count property to this value.

 Items.Count := fCollection.StoredCount;

 fCollection.First;

 if Items.Count > 0 then

 Items[0].Selected := True;

 end;

end;

Now we can retrieve the first item in the collection so that it will be available when the List View requires it. Finally we ensure that the first item in the List View is selected.

procedure TPDListView.CollectionDestroying(Sender: TObject);

begin

 if Sender = fCollection then

 SetCollection(nil);

end;

The CollectionDestroying event is used to intercept the destruction of the Collection, should this happen before the List View is destroyed. As you can see, this simply sets the Collection property to nil and we will see what effect that has when we discuss the SetCollection method.

procedure TPDListView.CollectionDisconnected(Sender: TObject);

begin

 if Sender = fCollection then

 begin

 Items.Clear;

 Columns.Clear;

 end;

end;

If the Collection is disconnected from the Object Store, then we need to clear the List View completely.

procedure TPDListView.CollectionViewChanged(Sender: TObject);

begin

 if Sender = fCollection then

 begin

 Items.Clear;

 Columns.Clear;

 with fViewProperties do

 begin

 First;

 while not IsDone do

 begin

 with Columns.Add do

 begin

 Alignment := CurrentAlignment;

 Caption := CurrentCaption;

 Width := CurrentWidth;

 end;

 Next;

 end;

 end;

 end;

end;

It is possible to construct alternative views on our collection by having several TListViewProperties objects available. These can have different column layouts and when we wish to change our view of the data, all we have to do is to assign a different TListViewProperties object; CollectionViewChanged is called when this happens and simply re-initialises the Columns used in the List View.

What Are We Looking At?

procedure TPDListView.SetCollection(Value: TPDCollection);

var

 orgConnected: Boolean;

begin

 if (fCollection <> Value) then

 begin

 if fCollection <> nil then

 begin

 Items.Clear;

 Columns.Clear;

 end;

 fCollection := Value;

If we want to tell the List View to display a Collection, we first have to determine if we are already looking at a Collection and whether we are not simply re-assigning the same Collection back into the List View; in which case we would not want to do anything else. However, if the Collection is different then we need to clear the old Items and Columns in preparation for those of the new Collection.

if fCollection <> nil then

 begin

 orgConnected := fCollection.Connected;

 fCollection.Connected := False;

 OwnerData := True;

 ViewStyle := vsReport;

 RowSelect := True;

 HideSelection := False;

 ReadOnly := True;

 fCollection.OnConnect := CollectionConnected;

 fCollection.OnDestroy := CollectionDestroying;

 fCollection.OnDisconnect := CollectionDisconnected;

 fCollection.OnViewChange := CollectionViewChanged;

 fViewProperties.Assign(fCollection.ListViewProperties);

 fCollection.Connected := orgConnected;

 end

 else

 OwnerData := False;

 end;

end;

Assuming we now have a new valid Collection, the first thing that we need to do is to remember whether the Collection is connected or not and then disconnect it. By Setting the OwnerData property of the List View to True, we are telling it to call the correct events that we will look at shortly. We set the ViewStyle to vsReport in order to give the familiar columnar style of list; we could also set the GridLines property if we wanted it to look like a grid. I use the RowSelect property to ensure that users cannot edit items (as well as setting the ReadOnly property) and the HideSelection is set to False so that you can see what the current row is even when the List View has not got the focus.

Next, we connect up the four events on the Collection to our handlers here in the List View; this ensures that although the List View knows how to deal with a Collection, the Collection need have no knowledge of how it is being displayed. Then we assign in the ListViewProperties of the new Collection and finally connect the collection if that was the state it was in before this method started.

procedure TPDListView.SetViewProperties(const Value: TListViewProperties);

begin

 if Value <> nil then

 fViewProperties.Assign(Value)

 else

 if fCollection <> nil then

 fViewProperties.Assign(fCollection.ListViewProperties);

end;

The method for setting the ListViewProperties property is slightly complex; first we check to see if we are assigning a new TListViewProperties object or just passing in nil. If there is a new object, then all we do is to replace the originals. But, if we pass in nil, this tells us to use the default properties object that was created as part of the Collection.

Now, Draw What I Tell You!

There are two methods that call the events that allow us to determine what is going to appear in the list:

function TPDListView.OwnerDataFetch(Item: TListItem; Request: TItemRequest): Boolean;

begin

OwnerDataFetch has two parameters: the Item which we shall be using and the Request which we shall not use in this example. To start with we must test to see if there is a valid collection to manipulate, otherwise we just call the inherited version of this method to carry out the default behaviour.

 if fCollection <> nil then

 begin

 if Item.Index < fCollection.Count then

 . . .

 Result := True;

 end

 else

 Result := inherited OwnerDataFetch(Item, Request);

end;

If Item.Index is less then fCollection.Count this means that we already have sufficient objects in our Collection to satisfy drawing the current row; otherwise more objects need to be fetched and this is taken care of by the OwnerDataHint method, so we just drop out of this method.

 if fViewProperties.Count > 0 then

 with fViewProperties do

 begin

 First;

 Item.Caption := fCollection[Item.Index].PropertyAsString[CurrentProperty];

Item.Caption is the text that will appear in the first column of the List View; this is filled from the first object in the ListViewProperties. PropertyAsString[…] is a property of TPDObject that gives us a string representation of that property whose name we pass in, see my previous articles.

 Next;

 while not IsDone do

 begin

 Item.SubItems.Add(fCollection[Item.Index].PropertyAsString[CurrentProperty]);

 Next;

 end;

 end;

We then use the remaining ListViewProperties to populate the remaining columns, which in TListView are known as SubItems.

function TPDListView.OwnerDataHint(StartIndex, EndIndex: Integer): Boolean;

begin

 if fCollection <> nil then

 begin

 while (fCollection.Count <= EndIndex) and

 (not fCollection.IsDone) do

 fCollection.Next;

 Result := True;

 end

 else

 Result := inherited OwnerDataHint(StartIndex, EndIndex);

end;

OwnerDataHint is a method that is meant to ensure that there is sufficient information available to satisfy upcoming calls to OwnerDataFetch. It receives the indices of the first and last rows that the List View is about to draw so that, in this instance we can call fCollection.Next sufficient times to fill the request. If you review previous articles, you will see that TPDCollection retrieves objects in ‘chunks’; this means that you may only need one call to Next to retrieve sufficient objects to supply all upcoming rows.

Conclusion

We started off by looking at the problems of storing pointers in a persistence mechanism and discussed how we can use IDs to such persistence. We said that the concept of IDs need not be known to someone who is programming with persistent objects as the Object Store took care of the translation between IDs and pointers.

Next we looked at limiting the size of list that is available for users to choose from. Is it a good idea to allow users to browse thousands of objects just to choose one?

This article has described in detail the construction of a List View that is capable of displaying a Collection of objects, we will look at designing a Search Dialog in the next article.

Joanna Carter is a writer, developer and trainer specialising in requirements-driven training and consultancy. Joanna is involved with mentoring several companies in the setting up of mapping object-oriented systems into relational databases. The Object Store discussed in these articles is now available commercially. You can e-mail her at JoannaC@btinternet.com and her web site can be found at joannac.btinternet.co.uk
