
The Adapter Pattern

Graeme Geldenhuys

2009-01-20

The Adapter pattern is used to convert the programming interface of
one class into that of another. We use adapters whenever we want
unrelated classes to work together in a single program. We will imple-
ment a simple Adapter and will also show how the Adapter pattern
can prevent you from being locked into a specific vendor's API, and
why that is a good thing.

Adapters are everywhere
The adapter design pattern is very easy to understand because the real world is full of
adapters. For example: if you wanted to use an American bought laptop in a European
country, you would need an AC power adapter. You should also know what the adapter
does. It changes the European wall outlet shape to the American shape that the laptop
expects. See Figure 1 which summarises what the adapter does and how the real world
adapter relates to what we want to do in software.

Not all adapters are simple. Some don't simply change the shape of the outlet. They may
also change the wall outlet's power voltage to what the laptop requires. Some may have
a fuse to protect the electronic device from a power overload.

The software based Adapter plays a similar role as the real world adapter. We could
write a simple Adapter class that has the desired interface and then make it communic-
ate with the class that has a different interface.

The Gang-of-Four book1 has the following official explanation of what the intent is of
the adaptor pattern: "Convert the interface of a class into another interface clients ex-
pect. Adapter lets classes work together that couldn't otherwise because of incompatible
interfaces."

1 Eric Gamma, Richard Helm, Ralph Johnson & John Vlissides: Design Patterns: Elements of Reusable
Object- Oriented Software. Addison-Wesley 1994. ISBN 0-201-63361-2, Page 139.

1

There are two ways to accomplish this task: by inheritance and by object composition.
In the Gang-of-Four book they call these Class Adapters and Object Adapters. Class
Adapters use inheritance and works as follows. We derive a new class from the noncon-
forming one and add the methods we need to make the new class match the expected
interface. Figure 2 shows a UML class diagram explaining the structure of a Class Ad-
apter. In the Gang-of-Four book they use multiple inheritance which we can easily fake
with Object Pascal's Interfaces language feature. The alternative adapter implementation
known as Object Adapter, normally require more work to implement but is well worth
the effort. We include the original class inside a new one and add the desired methods or
properties to translate the calls within the new class. Figure 3 shows the UML class dia-
gram of the Object Adapter.

2

Figure 1: An example of a real world adapter.

Why do we need the Adapter?
With development tools like Delphi and Lazarus, we have more and more components
to choose from when we write our software. As our software evolve over time, so do the
components we use. There might be newer and better components available after a few
years, or a vendor could have gone out of business and updates or support to those com-
ponent have halted.

When we started our project, we would have had to make a choice of what components
we wanted to use. For example: for SQL database access we could have chosen between
BDE controls (TDatabase and TQuery) or something that talks directly to the database
like IBObjects for Interbase & Firebird or SDAC for Microsoft SQL Server or DOA for
Oracle access. The latter three giving us better performance and more specific features,
or the BDE which is a more generic interface.

The same choices could have been made between encryption components, compression

3

Figure 2: The Class Adapter uses multiple inheritance to adapt one interface to another.

Figure 3: An Object Adapter relies on object composition.

components, XML parsers etc. We have no guarantee that the choice we made at the
time will be the correct or best choice in the future.

Dropping components on a form or data module will work fine for now, but what if cir-
cumstances change in the future and we need to change to a new vendor's components.
Our existing vendor could have gone our of business or our company could have
merged with another. There are various reasons for us needing to change our compon-
ents. Now imagine the huge task of having to manually search and replace components
in the data modules and various forms in our project. Then we would also have to
change our code to work with the new interface of the new components. That would
very likely be a huge undertaking and a costly one at that.

The concept of the Adapter pattern is quite simple. We could write a class that has the
interface we would like and in return the adapter will communicate with the class that
has a different interface. So if we now want to change from one vendor's components to
another, all that has to change is for the adapter to talk to a different vendor's compon-
ents. Our application still only communicates with the adapter, and it's interface has
stayed the same.

Initially this would be a lot of work to code up, but as with most design patterns, there
are huge rewards. I will start off by showing you a simple example so you can get an
understanding of how the Adapter works, then later I will talk about more advanced ex-
amples.

Moving Data Between Lists
Lets consider a simple program that allows us to move data between lists. The one list
will contain product names only. As we move the data item to the second list, we will
get a more detailed view of the associated item.

To add items to the listbox on the right, we click the button with the right arrow. The

4

Figure 4: A simple demo to display item details.

button's event handler looks as follows.

procedure TNoAdapterForm.btnAddClick(Sender: TObject);
var
 i: integer;
 obj: TProduct;
begin
 i := ListBox1.ItemIndex;
 if i < 0 then
 Exit; //==>
 obj := TProduct(ListBox1.Items.Objects[i]);
 ListBox2.Items.Add(
 Format(cLBDisplay, [obj.Name, obj.Price]));
 ListBox1.ItemIndex := -1;
end;

We first make sure that an item was highlighted in the left Listbox. We then extract a
object reference from the Items property of the Listbox. We then use the cLBDisplay
constant and format a string which we then add to the Listbox on the right. Afterwards
we deselect the previously highlighted item in the left Listbox.

Nothing very complicated, but it is a bit awkward having to use very TListBox specif-
ic properties and methods. In this small amount of code we are very much tied into the
TListBox design by referring to properties and methods like: ItemIndex, Item-
s.Objects[] array and Items.Add() method. This means if we ever wanted to
change our detailed display component to something other than a TListBox, we have a
lot of code that needs to change.

What we would prefer is a class that hides these complexities and TListBox dependen-
cies and adapts the interface to something we would like. We are looking for a simpler
interface that doesn't surface the internal properties and methods of the display compon-
ents we use.

To solve this problem, we create a TListAdapter class which gives us a simpler inter-
face and internally operates on a Listbox instance. The class declaration of the
TListAdapter is shown below.

TListAdapter = class(TObject)
private
 FListBox: TListBox;
public
 constructor Create(lb: TListBox);
 procedure Add(s: string);
 function SelectedIndex: integer;
 procedure Clear;
 procedure ClearSelection;
end;

We simply pass in the target ListBox instance as a parameter to the constructor. The rest
of the methods operate on the ListBox instance, but simplifies the interface. The follow-
ing code shows how we can slightly improve our code. The TListAdapter instance is
stored in the lstNew variable.

5

procedure TListAdapterForm.btnAddClick(Sender: TObject);
var
 i: integer;
 obj: TProduct;
begin
 i := ListBox1.ItemIndex;
 if i < 0 then
 Exit; //==>
 obj := TProduct(ListBox1.Items.Objects[i]);
 lstNew.Add(Format(cLBDisplay, [obj.Name, obj.Price]));
 ListBox1.ItemIndex := -1;
end;

If we are always going to do the same string formatting in the new Listbox, we can sim-
plify the code even further. Instead of calling Format(...) and then calling
lstNew.Add(...) with the resulting string as a parameter, we can actually pass in the
TProduct instance directly. The adapter class can then do the string formatting for us.
Here is the improved TListAdapter.Add() method...

procedure TListAdapter.Add(AProduct: TProduct);
begin
 FlistBox.Items.Add(
 Format(cLBDisplay, [AProduct.Name, AProduct.Price]));
end;

...and the new btnAddClick event handler.

procedure TListAdapterForm.btnAddClick(Sender: TObject);
var
 i: integer;
 obj: TProduct;
begin
 i := ListBox1.ItemIndex;
 if i < 0 then
 Exit; //==>
 obj := TProduct(ListBox1.Items.Objects[i]);
 lstNew.Add(obj);
 ListBox1.ItemIndex := -1;
end;

So lets summarise what we have done so far. We have created an Adapter class that con-
tains a ListBox reference. The Adapter class has also simplified how we use the
ListBox, without revealing any ListBox specific properties or methods. Next I will
show how we can apply a similar adapter to a StringGrid component. We will then use
the StringGrid to display the more detailed view of our products. This will also visually
improve how our detailed product data is displayed, using grid columns to align values.
The important thing is also that we want to keep the same interface we created for the
ListBox, but use the StringGrid component instead.

Here follows the implementation for the TGridAdapter class.

6

constructor TGridAdapter.Create(AGrid: TStringGrid);
begin
 inherited Create;
 FGrid := AGrid;
 FGrid.Options := FGrid.Options + [goRowSelect];
 FGrid.FixedCols := 0;
 FGrid.RowCount := 1;
end;

procedure TGridAdapter.Add(AProduct: TProduct);
var
 i: integer;
begin
 i := FGrid.RowCount;
 FGrid.RowCount := FGrid.RowCount+1;
 FGrid.Cells[0, i] := AProduct.Name;
 FGrid.Cells[1, i] := Format('%m', [AProduct.Price]);
end;

function TGridAdapter.SelectedIndex: integer;
begin
 Result := FGrid.Row;
end;

procedure TGridAdapter.Clear;
begin
 FGrid.Clear;
end;

procedure TGridAdapter.ClearSelection;
begin
 if SelectedIndex < 1 then
 Exit; //==>
 FGrid.DeleteColRow(False, SelectedIndex);
end;

As you can see, we have the exact same interface as we did for the Listbox Adapter. The
only interface change that we made here is that we have to pass in a TStringGrid in-
stance into the constructor. We did achieve our goal though - not wanting to change the
btnAddClick and btnRemoveClick event handler code. We can swap out the adapter
classes, switching between a ListBox or StringGrid without changing the Add or Re-
move button event handlers.

The adapter is really an easy pattern to implement. We could continue and adapt a
TTreeview or any other component, but I think you get the idea. Please note that accom-
panying this article, on the Toolbox DVD, is the complete source code for the
TListAdapter and TGridAdapter including the Lazarus demo project.

7

Other uses and improvements
Now that we have a working example, the next question people normally ask me is:
"Where or how do we create the Adapter instance?" There are various ways this can be
done.

The simplest method is to specify the appropriate concrete class directly in the code.
This is what we have done in the demo project. The down side of using this method is
that it locks us into using a specific class from design-time. Plus we will not have the
ability to swap adapters at runtime.

The second method is a slightly more flexible method, by using class references. This
will make it easier to vary our programs behaviour. Again, we will not have the flexibil-
ity of runtime changing, but it will make it a lot easier for compile-time changing. At
least this method will allow you to switch behaviour with a single line code change.

The third method and by for the most flexible of the lot is to use the Factory Pattern2. I
have already covered this pattern in a previous Toolbox issue, so will not go into more
details. To recap, the Factory can be implemented in Object Pascal as a TList of ob-
jects that map a string that identifies a class to a class reference that can be used to
create an instance of the class. Using this method we can vary the applications beha-
viour at design-time and runtime.

For more advanced examples of the Adapter pattern, I would recommend you look at
the tiOPF (TechInsite Object Persistence Framework) project3. The tiOPF uses OOP ex-
tensively and implements a lot of different design patterns. In the tiOPF the Adapter
pattern is used for the following tasks - to name but only a few. The first example is
where it wraps the compression library ZLib, which is included with Delphi and Free
Pascal, resulting in a much easier interface for us to use. It also uses the Factory pattern

2 Factory Pattern. Toolbox issue 5/2008
3 tiOPF project: http://tiopf.sourceforge.net/

8

Figure 5: The same item details but with a StringGrid Adapter.

so that the compression algorithm can be changed at runtime. Another example is where
the tiOPF wraps various encryption algorithms and gives them a uniform and easy to
use interface. Again the Factory pattern is used so that the encryption algorithms can be
changed at runtime.

Probably the most important usage of the Adapter in tiOPF is where the Adapter wraps
data access components. tiOPF supports over ten different persistence layers all using
different data access components from various vendors. The framework is so flexible
that you can even switch the persistence layers at runtime - a near impossible task with
component-on-form style of development. To find out how the tiOPF has accomplished
this, you can study the starting unit for database access called tiQuery.pas where it
defines various virtual abstract classes to handle navigation and field access - similar to
what TDataset does.

Summary
In summary, we have studied how the Adapter pattern works and how it can be used in a
simple project. We have also explored the more advanced usage options like wrapping
data access components and preventing vendor lock-in. We have also mentioned how
the Adapter pattern can be used with other design patterns like the Factory pattern. I
hope you found this information informative and that you now have the knowledge to
use yet another design pattern in your projects. I hope you find many uses for the Ad-
apter Pattern.

9

	Adapters are everywhere
	Why do we need the Adapter?
	Moving Data Between Lists
	Other uses and improvements
	Summary

