Relationship Manager

Graeme Geldenhuys
2009-07-10

In this article we are going to look at the problem surrounding object
oriented programming and object relationships. We will look at the tra-
ditional way of coding those relationships and their potential
problems. In this article | will show you an alternative solution on how
we can solve the various types of relationships like one-to-one, one-
to-many and many-to-many, all using design patterns. In the end we
will end up with a new design pattern called the Relationship Man-
ager. A central mediating class which records all the one-to-one, one-
to-many and many-to-many relationships between a group of selec-
ted classes.

So what is the problem?

When you are given the task to implement the business objects of some project, you will
definitely face the problem of coding up the relationships between classes. These rela-
tionships can vary in complexity — from simple ones like one-to-many, to more complex
relationships like many-to-many.

To try and explain the relationship complexities a bit easier, I will be using a simple ex-
ample of a music catalogue program. In this example you have three entities to deal
with: the Album, the Artist and the Tracks you will find on the album. By only using
these three simple entities we can already see a few different relationships than need im-
plementing.

In Figure 1 on page 2 we can see a UML diagram showing a one-to-one relationship
between the Album class and the Artist class. Objects can refer to each other directly via
object references. To save these objects to a database, it is vital to save the object refer-
ences as well. We can not however save these object references directly in a database,
because they are specific to the running instance of the application.

TAlbum TArtist
ID: integer ID: integer
Title: string MName: string
Artist: TObject ~reference »
TrackList: TObjectList 1.1
AddTrack()
RemoveTrack()

Figure 1: Example class diagram of a one-to-one relationship.

The solution is to use a foreign key in the database table. So to save the relationship
between these two classes, we need to store the ID field of the Artist instance in the
same record in the database table of the related Album. So as you can see from Figure 2
on page 2 our association goes from the Albums table to the Artists table.

«tablexs atables
Albums Artists
ID:int =123) ID:int = 456
Title: varchar = "Pearls of Passion" __@rrgm_kgy_} Name: varchar = "Roxette"
ArtistlD: int = 456

Figure 2: Database layout with foreign key for one-to-one relationship.

In our music catalogue program we also find a more complicated relation. A one-to-
many relationship between the Album and the Tracks. In Figure 3 on page 3 we can see
the UML diagram depicting the object relationship between the Album and the Track
objects. You many notice that the UML diagram looks very similar to the one from Fig-
ure 1 on page 2, but the object implementation is quite different. In this case we can't
simply use a object reference, because we need to track multiple TTrack object in-
stances. So in the TAlbum class we need to implement some or other collection to store
the Track references. Here the developer can choose various methods of implementing a
collection. In terms of Object Pascal, the developer can use a Dynamic Array, TObject-
List, TList etc.

TAlbum TTrack
ID: integer ID: integer
Title: string Title: string
Artist: TObject ~ reference » GetAlbum(): TObject
TrackList: TObjectList l.n
AddTrack()
RemoveTrack()

Figure 3: Example class diagram of a one-to-many relationship.

As before, the developer now faces the problem of saving this collection to the database.
We will again use a foreign key field to solve the problem, but in this case we need to re-
verse the direction of the association in the database tables. Our association will go from
the Tracks table to the Albums table.

«tablex «tablex
Albums Tracks

ID:int = 123 ID:int =456

Title: varchar = "Pearls of Passion" foral Name: varchar = "Soul Deep
oreign ke

< TANESY_ | A lbumiD: int = 123

Figure 4: Mapping a collection using a reverse foreign key.

There are many other obstacles at play here. The developer has now solve the problem
of saving the collection to the database. But what happens if the user of the music cata-
logue application amends the relationship after it has already been saved in the
database? For example, the user deletes a Track from the collection and assigns it to a
collection of different Album. Or the title of one of the Tracks have changed. Possible
solutions might be:

« Delete all the Tracks related to a Album in the database, and then save the collection
from the application instance back to the database.

+ Implement some form of diff comparison against each Track from the application in-
stance to what is currently stored in the database.

« Implement some form of back pointers

The second option is probably the easiest to implement for the developer, but it is defin-
itely not the most efficient.

As you can see, what started as a fairly simple music catalogue program suddenly be-
came a lot more complicated due to the various relationship types, and how we need to
save and restore those relationships to a database. Not to mention that each developer
might implement the class collections in a different manner - using a TObjectList or Ar-
ray etc.

The developer might use some object persistence framework like tiOPF[1] to standard-
ise on the collection implementation and help with the persisting of the data, but it's not
always sunshine and roses. In the case of tiOPF, if the developer used the auto-mapping
feature where the tiOPF generates the SQL statements automatically, the developer
might run into some problems, because the auto-mapping in tiOPF doesn't support
many-to-many relationships very well. So they will have to opt for using tiOPF's hard-
coded visitors to solve the problem.

Such inter-dependencies between classes and a tight coupling to the collection imple-
mentations also makes in much harder to unit test your classes.

So what can we do?

As you might have guessed, if you were reading my previous articles, there is always
some design pattern(s) we can apply to help solve our programming obstacles. This is
where the Relationship Manager design pattern steps in to save the day. The Relation-
ship Manager is simply a central mediating class[2] that handles all one-to-one, one-to-
many and many-to-many relationships between classes.

«singletons BaseBusinessObject
RelationshipManager Create(AReIMgr)
AddRelationship(...) uses
RemoveRelationships(...) 0.n <>
FindObjecti...)
FindObhjects(...)

N

NN
manages
0..n
AssociationObject To
To: TObject < =
From: TObject e rom

Figure 5: UML diagram of the Relationship Manager.

The traditional approach of creating a class relationship is to write non-trivial code
which often causes unnecessary coupling between classes. These hard coded dependen-
cies also make unit testing of those classes overly complicated. The Relationship
Manager allows you to setup relationships with a single line of code and keeps all in-
volved classes loosely coupled.

It 1s important to note that by using the Relationship Manager, it does not mean your
class interface has to change. You can still continue using method calls like Album.Ad-
dTrack (ATrack) or LAlbum := Track.GetAlbum. The Relationship Manager
simply makes the implementation of such method calls much simpler, and normally re-
duces them to only one-liner implementations.

Rel. Mgr. Implementation Client Implementation
«singleton» TBaseBusinessObject
TRelationshipManager RelMgr: TRelationshipManager;
AddRelationship(..) RelMgr Create(ARelMgr);
RemoveRelations hips(..)
FindObject(..)
FindObjects(..)
A
manages
TAlbum
0..n Title: string;
Artist: TArtist;
TAssociationObject TrackList: TList;
- To -
To: TObject K> From AddTrack(..)
From: TObject > RemoveTrack(..)
1 TrackList
TArtist
Name: string; Albuny -
TTracks
Title: string:

GetAlbum(): TAlbum;

Figure 6: Our Music Catalogue program shown as a UML diagram.

The implementation

The Relationship Manager is actually a very easy pattern to implement. I have included
two implementations of the Relationship Manager for this article. The one shown here in
this text is a simplified version — yet it works perfectly for in-memory relationships that
do not need to be stored to a database. I will leave that for you to implement as an exer-
cise. The second implementation is a more advanced and complete one. It uses the
tiOPF framework to help out with the persistence of the relationships to a database. The
second implementation also relies on the base classes, TtiObject and TtiObjectL-

ist, to help simplify the implementation and add some extra behaviour as a bonus.

Due to space constraints, I will only be showing the simplified implementation in this
text, but both implementations and their unit tests will be available on the accompanied
Toolbox magazine DVD.

Enough talk about theory — lets see some code!

TRelationshipManager = class (TObject)
private
// Internal list to store association objects
FList: TObjectList;
protected
// only for unit testing purposes
property List: TObjectList Read FList;
public
constructor Create;
destructor Destroy; override;
procedure AddRelationship (pFrom, pTo: TObject;
pRelId: string);
procedure RemoveRelationships (pFrom, pTo: TObject;
pRellId: string);
function FindObjects (pFrom: TObject = nil;
pTo: TObject = nil;
pRelId: string = ''): TObjectList;
function FindObject (pFrom: TObject = nil;
pTo: TObject = nil;
pRellId: string = ''): TObject;
end;

Above you can see the interface declaration of the TRelationshipManager class. The
Relationship Manager would normally be accessed via a Singleton[3], but this is not re-
quired. Sometimes it is even desirable to have a few instances of the Relationship
Manager — handling various groups of relationships per instance.

As you can see from the class declaration above, it has an internal list that stores the re-
lationships. Each relationship is represented by a data only class
TAssociationObject, of which I will talk about in a minute.

Then we have two procedures called AddRelationship () and RemoveRelation-—
ships (), which does exactly as their names describe. Respectively they add new
relationships or remove relationships from the Relationship Manager.

Then we also have two methods, FindObject () and FindObjects (), which the cli-
ent code can use to query the Relationship Manager.

For all these methods the pFrom and pTo parameters work in a similar fashion. The
parameters describe the direction of the relationship, or what list of objects it needs to
find and return. In the latter case where you are searching for objects, you would nor-
mally leave one of the parameters empty. The empty (nil) parameter indicates to the
Relationship Manager what it must search for.

The pRelID parameters is a string value, normally a constant definition, which defines
a specific relationship. Think of it as the name of the relationship. Each type of relation-
ship needs to have its own unique name. This relationship ID will be stored in the

TAssociationObject I mentioned earlier. This is how the Relationship Manager can
distinguish between various relationships, and ignore all the irrelevant relationships
when it needs to do a search. As an example, the value “album_tracks” might define the
relationship regarding what Track objects belong to what Album. If you preferred, you
can just as easily change the type of the relationship ID to Integer instead of String.
There is no rule that it must be implemented as a String type.

Below is the implementation section of our Relationship Manager showing the class,
TAssociationObject. As you can see, it is a pure data object — no data manipulation
happens in it. We could very easily have implemented this as a record structure as well.
This class is defined in the implementation section, so it is hidden from any other client
code. The reason for this is simply because it should not be used by any other client
code. It forms part of the internal workings of the Relationship Manager.

Type
{ This object store the relationship between two classes }
TAssociationObject = class (TObject)
private
FFromObj: TObject;
FRelID: string;
FToObj: TObject;
public
constructor Create (const pFrom: TObject;
const pTo: TObject; pRellID: string); reintroduce;
property FromObj: TObject read FFromObj write FFromObj;
property ToObj: TObject read FToObj write FToObj;
property RelID: string read FRelID write FRellID;
end;

{ TAssociationObject }

constructor TAssociationObject.Create (const pFrom: TObject;
const pTo: TObject; pRellID: string);
begin
inherited Create;
{ only the object references gets stored }

FFromObj := pFrom;

FToObj := pTo;

FRelID = pRelId;
end;

And finally we get to the TRelationshipManager implementation! As you read
through the code, you will notice that the implementation is quite easy to follow — one
of the easier design patterns to implement. I have placed comments in the code to help
explain certain areas.

{ TRelationshipManager }

constructor TRelationshipManager.Create;

begin

inherited Create;

FList := TObjectList.Create;
end;

Result.Free;
Result := nil;
end;
end;

function TRelationshipManager.FindObject (pFrom: TObject;
pTo: TObject; pRelld: string): TObject;

var
lst: TObjectList;

begin
Result := nil;
1st = FindObjects (pFrom, pTo, pRelId);

if Assigned(lst) then
// Because lst is a TObjectList which manages its items
// memory, we have to extract it before it gets freed
// with the list.
Result := lst.Extract(lst.First);
Lat.Freeg
end;

procedure TRelationshipManager.RemoveRelationships (pFrom,
pTo: TObject; pRelID: string);
var
lst: TObjectList;
i: integer;
begin
Assert (pFrom <> nil);
Assert (pTo <> nil);

lst := FindObjects (pFrom, pTo, pRellD);
if Assigned(lst) then
begin

for i := lst.Count - 1 to 0 do

Flist.Extract (TAssociationObject (lst.Items[i]));
TAssociationObject (1st.Items[1]) .Free;
lst.Free;
end;
end;

Further Discussion and Improvement Ideas

Here are a few ideas that can be implemented in the future. Some comments also relate
to the slightly more advanced implementation available on the Toolbox DVD. Also re-
member that the more advanced version is used with the tiOPF Framework, but can just
as easily be applied to any other type of persistence framework.

e As I mentioned earlier, the Relationship ID is currently defined as a String type.
There is no set rule that it must be a string type. It can very easily be changed to
a Integer, GUID or whatever data type you preferred. The more advanced imple-
mentation uses an Integer type.

e There may come a time where you would like to restrict what users are allowed
to see — what relationships relate to them. Many applications include some form
of user security levels in their software — limiting the user to what they are al-
lowed to see. For this reason you might want to incorporate that security into the

Relationship Manager as well. Limiting what relationships a specific user may
query — based on their security level.

e Creating new business object classes at the Database and Object Persistence
Framework visitor level is very flexible. You just need to take care of the non-
object properties, the Relationship Manager will do the rest when it comes to
(any kind of) object relations.

e Traversing complex object structures is really easy, no need to take care of back-
pointers to parents etc. One-to-one, one-to-many and many-to-many relation-
ships are supported in the same way.

We can't always have everything working perfectly — what fun would that be? There are
some possible problems — or rather things that could be improved on. The implementa-
tions [made available to you are not 100% perfect in design. There are a few things that
could be improved on, but remember this is only related to the implementations on the
DVD. Your own implementations might not have these issues at all.

e When the RM is used for multiple complex relation types, it can quickly become
the main bottleneck in an application due to the great number of association ob-
jects. This could probably be improved on by making giving the relationship
manager slightly more information, which it could then use to create some form
of a hash list. The other alternative is to use multiple instances of the relationship
manager for various parts of your application.

e The Relationship Manager might require the lists related to the association ob-
jects to be read into memory before the Relationship Manager gets populated.
This might mean those lists must be globally accessible. The TListStrategy
used in the advanced Relationship Manager is an attempt to mitigate this.

e Sometimes temporary variables must be used to avoid two calls to the Relation-
ship Manager — which would mean you are actually doing two object lookups.
For example, the following code will trigger two calls to the Relationship Man-
ager — and two searches through the relationship list:

if Assigned (Order.Customer) then
Display (Order.Customer.Name) ;

To avoid the double call we must use a temporary variable:

tmpCustomer := Order.Customer;
if Assigned (tmpCustomer) then
Display (tmpCustomer.Name) ;

10

Conclusion

The relationship manager pattern might not be for everybody. The most probable reason
might be that it is too different to what you are used to. I have found the Relationship
Manager very handy in certain projects — especially ones with complex relationships. So
there is definitely a use for the Relationship Manager.

I also mentioned earlier about unit tests. I have included all the test suites in the accom-
panied code as console based applications. There are test suites for both
implementations (easy and advanced). I would also like to take this time to mention that
I followed the programming technique called Zest-Driven Development, while 1 imple-
mented the Relationship Manager. I highly recommend you give it a try. You can read
more about it in this book: “Test-Driven Development by Example”[4] or Google for
more information.

References on the following page...

11

[1] Toolbox 22007, Seite 26: Das Persistenzframework tiOPF by Michael Van Canneyt.
tiOPF homepage is freely available at http://www.tiopf.com

[2] Eric Gamma, Richard Helm, Ralph Johnson & John Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley 1994. ISBN 0-201-63361-2, Seite 273.

[3] Toolbox 6'1998, Seite 58: Das Singleton-Pattern in C++ by Marian Heddesheimer.
Toolbox 5'2008: Patterns in Pascal: bessere Programmpflege mit Simple Factories

[4] Kent Beck: Test-Driven Development: by Example. Addison-Wesley 2003. ISBN 0-321-14653-0

http://www.tiopf.com/

	So what is the problem?
	So what can we do?
	The implementation
	Further Discussion and Improvement Ideas
	Conclusion

