
The Iterator Pattern

Graeme Geldenhuys

2008-11-20

As the name suggests, an Iterator is something that allows you to se-
quentially access all the items in a collection. This patterns article will
cover how to implement them for Delphi and Free Pascal collection
classes and highlight some differences compared to other languages
like Java.

What is an Iterator?
Implementing a design pattern normally takes a reasonable amount of time and effort. It
is not something that takes seconds to implement. The nice thing about the Iterator, is
that it is one of the easier patterns to implement - almost as quick and easy as the
Singleton. So in this article I want to introduce to you a pattern that everybody could
use straight away. It hardly uses any extra code, it normally reduces your lines of code.
That also means a few less lines to debug in your application!

As described in the Design Patterns book by the GoFi, an Iterator is something that al-
lows you to sequentially access all items in a collection. In its simplest form, it allows
you to test if there are more items in the collection and then access the next item. So lets
jump right into the implementation. We could define a very simple Iterator interface as
follows:

ITBIterator = Interface(IInterface)
['{B2A449B4-5D0A-4F14-AC11-CA055EDA3ED7}']
 function HasNext: Boolean;
 function Next: String;
end;

Here we have two simple functions. HasNext() that returns True if there are more
items in the collection or False otherwise. The function Next() returns the next item in
the collection. At the moment this Iterator only returns a String type in the Next()
method, but we will deal with that later when we implement a few more Iterator inter-
faces.

1

So how would code look like that uses such an Iterator. Before I show you that, let me
show you the traditional way that developers traverse through a collection, so you we
can compare the difference.

for i := 0 to MyStrings.Count-1 do
 ShowMessage(MyStrings.Items[i]);

That is fairly standard code traversing through a TStrings collection and I'm sure we
have all seen code like that before. We directly access the collection and it's storage
structure. So lets get to our Iterator example and see how it compares. Ignoring for the
moment of how we get an instance of this Iterator, which we will deal with later, the us-
age will look as follows.

while MyIterator.HasNext do
 ShowMessage(MyIterator.Next);

By now developers would normally say: "What is the big deal?". My answer is simple.
Yes you can continue writing iteration code like we did in the first example, but you will
quickly notice some problems. You would have to slightly modify that code if you de-
cided to traverse over a TTreeview or a TObjectList or TCollections etc...
Things get even more complex when you decide to traverse over all cell items in a
TStringGrid or list items in a TListview. The point is that even though many differ-
ent collection classes give you a way to traverse over their items, the actual iteration
code is slightly different for each collection class. The iteration code never stays con-
sistent because the internal storage structure of each collection class is slightly different
to the next. So your iteration code is tightly tied to the collection class you are using.

This is where good object oriented programming and design patterns come into play.
The golden rule is to always design your software so it is flexible to future changes. So
lets list a few of the benefits of using Iterators:

● They give the developer a consistent interface to traverse over a collection.

● The iteration code stays independent of the collection type you are using.

● It is very easy to have multiple Iterators traversing over the same collection.

● Different Iterator implementations allow you to be more flexible about what
items in the collection you are accessing, without affecting the iteration code.
For example: Your Iterator my only give you access to a subset / filtered view of
the items in the collection.

Iterator Interfaces and Implementation
As I mentioned earlier, the Iterator interface we defined in the beginning of this article
only returns the String type. This is fine for a TStrings collection, but what about
something like the TList collection that contains TObject items. Using the Java lan-
guage this is easily handled, because in Java almost everything is an Object. So Java
Iterators can simply return a Object for any collection type and it would be handled cor-
rectly. While using Object Pascal we are not quite so lucky. The solution is simple
though. To overcome this issue, we have to implement different Iterator interfaces for

2

all the collection types we want to use. These interfaces will basically differ only by the
return type of the Next() method. The important thing to remember is that the usage of
the iterators will still stay the same. Here is a partial list of some Iterator interfaces. The
full source code, including other iterator interfaces, are available on the Toolbox
Magazine cover DVD.

{ traversing TStrings collections }
ITBStringIterator = interface(IInterface)
['{B2A449B4-5D0A-4F14-AC11-CA055EDA3ED7}']
 function HasNext: Boolean;
 function Next: string;
end

{ traversing TList collections }
ITBIterator = interface(IInterface)
['{9C2BC10D-54C8-4B59-88B5-A564921CF0E3}']
 function HasNext: Boolean;
 function Next: TObject;
end;

{ traversing TStrings collections with Objects associated
 to each item }
ITBStringAndObjectIterator = interface(ITBStringIterator)
['{287373DC-A90D-400E-BAEE-C85474C317A8}']
 function HasNextObject: Boolean;
 function NextObject: TObject;
end;

{ traversing InterfaceList collections }
ITBInterfaceIterator = interface(IInterface)
['{9B599C5B-4BBB-43F6-AF8E-09FEE9AE0E20}']
 function HasNext: Boolean;
 function Next: IInterface;
end;

The Iterator interfaces I am introducing here is designed as per the Java-style Iterators.
This is important to mention, so as to help you understand the implementation. Java-
style iterators do not have a Current() method. The cursor or index position of the
iterator is between items in a collection, and not pointing directly at items in the collec-
tion. See Figure 1. One reason for this design is so that it requires less error checking in
the iteration code. It also makes more sense when your iterator interfaces contains meth-
ods like Add(), Remove(), SetItem() etc. - modifying your collection, but always
leaving your iterator in a stable state afterwards. The implementation I am showing here
does not contain these modifier methods - this is purely to keep things simpler for this
article. The entire Java-style API and implementation is based on the idea that the iterat-
or remembers which item it skipped last. This is very important to remember! I believe
it is a nice feature of Java's iterators and I am sure you will grow to love it. As a side
note: Microsoft's .NET iterators, which are called Enumerators for some reason, use the
opposite approach. In .NET the iterator cursor/index points directly at an item in the col-
lection.

So to recap. The Next() function returns the next item in the collection and advances
the iterator. The first call to Next() advances the iterator to the position between the
first and second item, and returns the first item; the second call to Next() advances the
iterator to the position between the second and third item, and returns the second item;

3

and so on.

So now that we know all about how iterators work, it is time we look at an actual imple-
mentation. We are going to implement the Strings iterator for a TStrings class.
Because TStrings can also manage Objects, I thought we could implement both inter-
faces in a single class. Below is the interface for our TTBStringsIterator class.

TTBStringsIterator = class(TInterfacedObject,
 ITBStringIterator,
 ITBStringAndObjectIterator)
private
 FStrings: TStrings;
 FCursor: Integer;
 { ITBStringIterator and ITBStringAndObjectIterator }
 function HasNext: Boolean;
 function Next: string;
 { ITBStringAndObjectIterator }
 function HasNextObject: Boolean;
 function NextObject: TObject;
public
 constructor CreateCustom(
 const ASource: TStrings); virtual;
end;

As you can see in the class declaration, we inherit from the TInterfacedObject
class. This will handle our reference counting and automatically take care of freeing our
Iterator when we are done with it. We also specified both Interfaces we want to imple-
ment. The ITBStringIterator and the ITBStringAndObjectIterator.

We created a custom constructor called CreateCustom, and pass in as a parameter the
TStrings instance or collection we want to traverse. We store a reference to the
TStrings instance as a private field variable called FStrings. We also have another
private field variable called FCursor, which will keep track of where we are in our col-
lection.

4

Figure 1: Java-style iterators point between items rather than directly at items.

Both our Interfaces have two methods in common, the HasNext() and Next() func-
tions. Because they are the same, we only need to declare them once in our class. For
our class declaration to be complete, we still need to declare the two remaining func-
tions of the ITBStringAndObjectIterator interface - HasNextObject() and
NextObject().

I would like to point out something in the class declaration. As you might have noticed,
all the required Interface functions are declared Private. The reason for that is because
we would never access those methods via an Object instance. We will only every access
them via an Interface reference. So to enforce that rule and prevent temptation, I de-
clared them Private.

Now for the implementation section of our Iterator class. As you will see from the fol-
lowing code, implementing an Iterator is very easy.

function TTBStringsIterator.HasNext: Boolean;
begin
 Result := False;
 if Assigned(FStrings) then
 if FCursor < FStrings.Count - 1 then
 Result := True;
end;

function TTBStringsIterator.Next: String;
begin
 Result := '';
 if HasNext then
 begin
 Inc(FCursor, 1);
 Result := FStrings.Strings[FCursor];
 end;
end;

function TTBStringsIterator.HasNextObject: Boolean;
begin
 Result := False;
 if Assigned(FStrings) then
 if FCursor < FStrings.Count - 1 then
 Result := FStrings.Objects[FCursor] <> nil;
end;

function TTBStringsIterator.NextObject: TObject;
begin
 Result := nil;
 if HasNextObject then
 Result := FStrings.Objects[FCursor];
end;

constructor TTBStringsIterator.CreateCustom(
 const ASource: TStrings);
begin
 inherited Create;
 FStrings := ASource;
 FCursor := -1;
end;

The constructor simply assigns our TStrings parameter to the FStrings field vari-
able, and we set our cursor/index field variable FCursor to -1 to indicate that we are at

5

at the beginning of our collection, in front of the first item. Remember that the Items
and Objects properties of a TStrings class is zero based, meaning the first item is at
position 0. Also remember to look at Figure 1, to follow how the cursor jumps between
items.

The HasNext() method returns a boolean value and defaults to False. If the current
cursor position is smaller than the number of items in the collection, we return True to
indicate that we have remaining items to traverse.

The Next() method returns an item from the collection. Because we are implementing
an iterator for TStrings, the item we return is of type String. We default to an empty
string as a small safety measure. We then call HasNext() to test if we have anything
remaining to traverse. If the answer is True, we increment the cursor by one and then re-
turn the item we just jumped over.

The HasNextObject() implementation is very similar to the HasNext() method, but
this time it does one extra check. It first checks that the current cursor position is smal-
ler than the number of items in the collection. It then checks to see if there is an actual
object stored in the Objects property. If all is well, it returns True.

The NextObject() implementation is also very similar to the Next() method, but it
returns a Object instead of a String. It calls HasNextObject() to test if we have any-
thing remaining to return. If the answer is True, it returns the next Object stored in the
collection.

How to get an Iterator instance?
The last big mystery is how do we actually get hold of a iterator instance? We could cre-
ate an instance as shown below:

var
 MyStringIterator: ITBStringIterator;
begin
 MyStringIterator :=
 TTBStringsIterator.Create(MyStringList);
 while MyStringIterator.HasNext do
 ...
end;

This would work, but it would totally defeat the point I am trying to make with Iterat-
ors. The following problems should be clearly visible:

● We are not saving on the amount of code lines required.

● By creating an explicit TTBStringsIterator instance, we also know to much
about the Iterator instance and required types.

● We also have to include the unit in the uses clause that contains the TTBSting-
sIterator class.

● We know so much about the collection, we could just as well have traversed our
collection using a for statement and Integer variable.

Now the nice thing in Java, is that all collection classes have built-in support for iterat-

6

ors. We can simply call a method and it returns the correct Iterator instance. Unfortu-
nately we are not so lucky with Free Pascal or Delphi. There are no built-in support for
Iterators in the collection classes, so we have to come up with another solution.

What we want to achieve is to obtain the correct Iterator implementation for a specific
collection while staying ignorant of the types required. The solution is once again a
simple one. We turn our attention to another design pattern to help us. What we just de-
scribed is pretty much the definition of the Factory Pattern which I covered a few
issues agoii. There are a few ways we can implement the solution using any one of the
various factory patterns. I am going to use the Factory Method to implement an Iterator
Factory class. Although my implementation is very simple, it's perfectly adequate for
what we want. Our Iterator Factory will contain various methods to represent the differ-
ent types of collection classes. We simply call the method of the class we are working
with and it will return a Iterator Interface for that collection. Below is the interface sec-
tion of our Iterator Factory:

TTBIteratorFactory = class(TObject)
 function Iterator(
 const ASource: TObject): ITBIterator;
 function StringIterator(
 const ASource: TObject): ITBStringIterator;
 function StringAndObjectIterator(
 const ASource: TObject): ITBStringAndObjectIterator;
 function InterfaceIterator(
 const ASource: TObject): ITBInterfaceIterator;
 function FilteredStringIterator(
 const ASource: Tobject;
 const AFilter: string): ITBFilteredStringIterator;
end;

Please note that this is by no means a complete implementation. I kept it small to sim-
plify it for this article. As we extend our code and develop new iterators we can add new
methods to our Iterator Factory. That way the Iterator Factory can instantiate our new
iterators. Below is the implementation for the TTBIteratorFactory.Iterator
method which handles iterators for the TList and TCollection classes.

function TTBIteratorFactory.Iterator(
 const ASource: TObject): ITBIterator;
begin
 if ASource is TList then
 Result := TTBListIterator.CreateCustom(
 TList(ASource))
 else if ASource is TCollection then
 Result := TTBCollectionIterator.CreateCustom(
 TCollection(ASource))
// Here we can extend it for TreeView support.
// else if ASource is TTreeNodes then
// Result := TTBTreeNodesIterator.CreateCustom(
// TTreeNodes(ASource))
 else
 raise ENoIteratorImpl.CreateFmt(cNoIteratorImpl,
 [ASource.ClassName]);
end;

As you can see, we pass in the collection we are working with as a parameter to the

7

factory methods. We specified the ASource parameters as the generic base type TOb-
ject, so that any collection class could be passed in. Then we simply test to see if the
ASource parameter is of any of the supported types. If we find a match, we create the
correct iterator class instance and return it. If we did not find a match, that means this
factory method doesn't support that collection type. We then simply raise an exception
with a message notifying the user of the problem. To resolve the problem, the factory
method needs to be extended to support that collection type, or a new factory method
needs to be created for that collection.

In the code, you can also see a few commented lines. This is a possible place where this
factory method can be extended to support the TTreeview nodes for instance.

We can now create and use an iterator instance using code as follows:

var
 itr: ITBStringIterator;
begin
 ...
 itr := gIteratorFactory.StringIterator(sl);
 while itr.HasNext do
 writeln(itr.Next);
 ...
end;

Now you might ask: "Where do we get the gIteratorFactory instance from?"

Well, for that we can turn to yet another design pattern. We don't want to construct an
Iterator Factory instance every time we need an Iterator. We also don't need multiple in-
stances of the Iterator Factory. To solve both these problems we use the Singleton design
pattern to handle the construction of the Iterator Factory when we need itiii. The
Singleton design pattern will also take care of only ever creating one instance of the
Iterator Factory. I have used a very simply but very effective Singleton implementation
as shown below.

8

interface
...

 { Global iterator factory singleton }
 function gIteratorFactory: TTBIteratorFactory;

implementation
var
 uIteratorFactory: TTBIteratorFactory;

{ The lazy-man's singleton implementation. }
function gIteratorFactory: TTBIteratorFactory;
begin
 if not Assigned(uIteratorFactory) then
 uIteratorFactory := TTBIteratorFactory.Create;
 Result := uIteratorFactory;
end;

...

initialization
 uIteratorFactory := nil;

finalization
 uIteratorFactory.Free;

end.

We have a global or system wide function called gIteratorFactory which will re-
turn our Iterator Factory instance. We then have a variable called uIteratorFactory
which is only visible in that unit. This variable will hold the instance of our Iterator
Factory. When the user calls gIteratorFactory it checks to see if uIterator-
Factory already has an instance assigned. If it hasn't, we create one and then return the
instance. The finalization section will free our Iterator Factory instance when the applic-
ation terminates.

That completes our Iterator pattern implementation!

So what's next?
All the code I used so far in this article is included on the cover DVD. I also included a
few more iterator implementations for other collection types, including a simple console
application showing the code being used.

The iterators I have talked about and shown are quite basic. They always traverse the
whole collection from the beginning to the end. Remeber that you are not limited to
only standard iterators that traverse a whole collection. Nothing stops you from extend-
ing the iterators to include all kinds of handy features. One such feature could be
filtering! Say you wanted to traverse a TStringList, but only return a subset of items.
This could be very handy in some cases. As an example, I created an ITBFiltered-
StringIterator interface in the accompanied article code. The
TTBFilteredStringsIterator class included in the source code uses the regular
expressionsiv unit called regex.pp, which is included with Free Pascal. This allows
you to filter the returned items in a StringList collection using similar code to the fol-

9

lowing:

fitr := gIteratorFactory.FilteredStringIterator(
 MyStringsCollection, 'foob.*r');
while fitr.HasNext do
 DoSomethingWithItem(fitr.Next);

Figure 2 shows the sample output of the demo program. We created a StringList with
five string items in it. Then we created a standard string iterator and traversed the whole
StringList. As items were returned, so we wrote them to the console window as output.
We then created another iterator, but this time a filtered one, using the regular expres-
sion 'foob.*r'. Again we traversed the same StringList and output the returned items
to the console window. As you can see from the screenshot, the second iterator only had
a subset of items returned from the StringList collection.

Filtering is just one of many features we can add to Iterators. We can also extend the
Iterator API so we can traverse a collection in a forwards direction and a backwards dir-
ection. Table 1 shows an extended Iterator API. This can easily be added to the sample
iterators created in this article and add a lot more flexibility to your Iterators.

Hopefully I have shown you how handy the Iterator Pattern can be and how easy it is to
implement. Not all design patterns are difficult to implement or complex in design. So
now you can use the accompanied source code as a starting block and build you own
custom iterators from there. Once you start using Iterators in your applications, you and
your co-workers will never have to think twice about how to traverse a collection. Your
code will be more consistent, easier to maintain and you should never need to access a

10

Figure 2: Sample output of a String Iterator and Filter String Iterator against the same
StringList.

collection directly again.

Function Description

Add(item) Inserts a specified item into the collection. (optional modifier
operation)

HasNext() Returns true if the collection has more items when traversing the
collection in the forward direction.

HasPrevious() Returns true if the collection has more items when traversing the
collection in the reverse direction.

Next() Returns the next item in the collection.

Previous() Returns the previous item in the collection.

Reset() Jum to the beginning of the collection, setting the cursor/index
before the first item in the collection. The iterator is now in the
same state as if you just created it.

ToBack() Jump to the end off the collection, setting the cursor/index after the
last item in the collection. This needs to be called before you want
to traverse the collection in the reverse order.

PeekNext() Returns the next item without moving the iterator's cursor/index.

PeekPrevious() Returns the previous item without moving the iterator's
cursor/index.

Remove() Removes from the collection the last item that was returned by the
Next() or Previous() calls. (optional modifier operation)

SetItem(item) Replaces the last item returned by the Next() or Previous() calls
with the specified item. (optional modifier operation)

Table 1: A more extensive Iterator API.

11

i Eric Gamma, Richard Helm, Ralph Johnson & John Vlissides: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley 1994. ISBN 0-201-63361-2, Seite 257.

ii Toolbox 5'2008: Patterns in Pascal: bessere Programmpflege mit Simple Factories
iii Singleton Pattern: http://en.wikipedia.org/wiki/Singleton_pattern
iv Regular Expressions: http://en.wikipedia.org/wiki/Regular_expressions

	What is an Iterator?
	Iterator Interfaces and Implementation
	How to get an Iterator instance?
	So what's next?

