
The Facade Design Pattern

Graeme Geldenhuys

2011-12-26

The Facade Design Pattern describes a way of making a subsystem
(a set of classes that work closely together) easier to use. The
Facade allows us to simplify the interface to such a subsystem with a
higher-level interface. It also promotes the idea of avoiding tight
dependencies on the components of such a subsystem. This article
will introduce the Facade Pattern using an easy to understand
example, and also touch on another design pattern (the Adapter
Pattern) that sounds very similar in behaviour to the Facade - but we
will highlight some important differences between them.

Stop the bus! What is a Design Pattern?
Wikipedia describes a software design pattern as follows1:

“In software engineering, a design pattern is a general reusable solution to a commonly
occurring problem within a given context in software design. A design pattern is not a
finished design that can be transformed directly into code. It is a well documented
description of how to solve a problem that can be used in many different situations.”

In short, design patterns describes a solution to a design problem that some clever
people already solved. A very important point to make though, is that design patterns
are NOT code templates!

Design Patterns are very useful to software designers. They can speed up the
development process by providing tested and proven development paradigms. Effective
software design requires considering issues that may not become visible until later in
the implementation. Reusing design patterns helps to prevent subtle issues that can
cause major problems later. The way Design Patterns are documented, they also use
consistent terminology – thus communicating a design solution, using design pattern
terminology, to another programmer that is also versed in design patterns, makes them
understand the design solution much better. It also improves code readability for coders
and architects familiar with the patterns.

1 Wikipedia (English Language): Software Design Pattern
(http://en.wikipedia.org/wiki/Software_design_pattern)

1

http://en.wikipedia.org/wiki/Software_design_pattern

Design Patterns are normally classified into one of three groups – based on their
purpose.

● Creational: patterns that work towards the process of creating objects.

● Structural: patterns that deal with the composition of classes or objects.

● Behavioural: patterns that affect the ways in which classes or objects interact
with each other and distribute responsibility.

The Facade Pattern is classified as a Structural design pattern.

For more in-depth information about Design Patterns, please visit your local book store,
or simply search the Internet. There is a lot of information about design patterns all
over the Internet.

Back to our problem example
Lets start off by jumping straight into our problem example - highlighting what the
problem is with our example, and how the Facade Pattern can help us solve the
problem, or at least greatly improve the design.

Something most of us have probably wished for, or tried to build some way or another,
is a Home Theatre System. An awesome system that can play DVD's with surround
sound speakers, a wide-screen projection system, and even a popcorn machine. What
better way to relax, put your feet up and listen to some music or watch your favourite
blockbuster movie.

Now lets assume you just completed all the hard work by finally installing all the
various parts of your system – the amplifier, projector, projector screen, speakers etc.
All that remain is for us to switch everything on and watch a movie in its full glory! But
what exactly are the steps to switch on your home theatre system and watch that movie?
Here is a list of things we need to do, in a specific order, just so we can watch our
favourite movie.

1. Load the Popcorn Machine

2. Switch on the Popcorn Machine

3. Lower the Projector Screen

4. Switch on the amplifier

5. Set the amplifier volume to medium

6. Set the amplifier input to DVD

7. Switch on the DVD player

8. Load the DVD

9. Set the DVD player to surround sound mode

10. Switch on the projector

11. Set the projector input to DVD

12. Set the projector to wide-screen mode

2

13. Dim the lights

14. Start playing the DVD

What a list! We have to fiddle with so many different components, apply the correct
settings on multiple components etc. Makes one wonder... Do you have to do this every
time? How complex would the process be if I wanted to switch everything off once we
are done watching our movie? Do we have to follow that whole list of steps again, but
in reverse? What if we wanted to listen to some music instead of watching a movie?
Would we end up with such a long list of step too?

A long list of questions, and to most of them the answer is the same: Yes, we would
require another long list of steps to follow. Sigh.

To help visualise our home theatre system in terms of a software project, I have created
a high-level component diagram representing our home theatre system, and indicated
using arrows, how each component might depend or interact with other components.
The diagram also indicates how the client [that is us] interacts with each component.

3

Now if we had to implement our home theatre system in terms of software and classes,
this is how our list of steps would look in terms of source code:

Listing 1:
PopcornMachine.LoadPopcorn;
PopcornMachine.On;

ProjectorScreen.Down;

Amplifier.On;
Amplifier.SetVolume(50%);
Amplifier.SetDVD(DVDPlayer);

4

Figure 1: Home Theatre System showing component interactions.

DVDPlayer.On;
DVDPlayer.LoadMovie(MovieName);
DVDPlayer.SetSurroundAudio;

Projector.On;
Projector.SetWideScreenMode;

LightingSystem.On;
LightingSystem.Dim;

DVDPlayer.Play;

Those are a lot of objects and a lot of different interfaces that we need to learn before
we can enjoy our home theatre system.

And to make matters worse, the whole system can become even more complex over
time too. What if we wanted to add a Blu-ray Disc Player to our home theatre system?
Or we wanted to start watching television via our newly purchased satellite decoder?

Facade to the rescue
Even though design patterns might sound complex at first, the Facade Pattern is actually
very easy to understand and implement. The Gang-of-Four book (which is often
considered the bible of design pattern books) has the following official explanation of
what the intent is of the Facade Pattern2:

“The Facade Pattern provides a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem easier to use.”

That doesn't sound too complex at all – so lets follow what it says. First we introduce a
new facade class into our home theatre system. Our facade class will treat our home
theatre system like a subsystem – many components that work together. Please see
Figure 2 on page 6 for an overall picture of how we changed the home theatre system's
design.

The new class we introduced is called HomeTheatreFacade, which introduces new
methods for us [the client] to use. The HomeTheatreFacade class talks directly to the
Home Theatre subsystem. We then modify the client code to talk to the
HomeTheatreFacade class, instead of talking directly to the various subsystem
components.

The new facade class greatly simplifies the usage of the subsystem. Now, instead of
having to following a thirteen step process to watch a movie, we can simply call
HomeTheatreFacade.WatchMovie(). How easy is that! What really makes the
Facade Pattern even better, is that it doesn't hide the subsystem components from us
[more about this later], it just makes them easier to use. If we need to access the low-
level functionality of a certain component in the subsystem, we can still do so without
limitations.

2 Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley 1994. ISBN 0-201-63361-2 (page 185).

5

Home Theatre Facade implementation
So lets cover the details of how to implement the HomeTheatreFacade class, and how
to use it. A facade implementation often takes advantage of composition – one of many
good object oriented principles to follow. In short, composition is when one class keeps
instances or references of other objects in private field variables, so they can be referred
to later when needed. Composition is a object oriented principle often preferred over

6

Figure 2: Home Theatre Subsystem with a facade class.

Inheritance.

Here is the class interface definition for our HomeTheatreFacade class.

 THomeTheatreFacade = class(TObject)
 private
 { This is the composition I mentioned }
 FPopcorn: TPopcornMachine;
 FLights: TLightingSystem;
 FScreen: TProjectorScreen;
 FAmp: TAmplifier;
 FDVD: TDVDPlayer;
 FCD: TCDPlayer;
 FTuner: TRadioTuner;
 FProjector: TProjector;
 public
 constructor Create(APopCorn: TPopcornMachine;
 ALights: TLightingSystem;
 AScreen: TProjectorScreen;
 AAmplifier: TAmplifier;
 ADVDPlayer: TDVDPlayer;
 ACDPlayer: TCDPlayer;
 ATuner: TRadioTuner;
 AProjector: TProjector);
 procedure WatchMovie(const AMovieTitle: string);
 procedure EndMovie;
 procedure ListenCD(const ACDTitle: string);
 procedure EndCD;
 procedure ListenRadio(const AFrequency: double);
 procedure EndRadio;
 end;

The first step in implementing this class, would be to construct an instance of the
THomeTheatreFacade and make sure it uses the preferred OO principal,
Composition, to keep track of the subsystem components. To do this, we simply pass the
component instances of the Home Theatre subsystem to the THomeTheatreFacade's
constructor. Here follows the source code implementation of the constructor:

constructor THomeTheatreFacade.Create(
 APopCorn: TPopcornMachine;
 ALights: TLightingSystem;
 AScreen: TProjectorScreen;
 AAmplifier: TAmplifier;
 ADVDPlayer: TDVDPlayer;
 ACDPlayer: TCDPlayer;
 ATuner: TRadioTuner;
 AProjector: TProjector);
begin
 { Here we assign a reference to each component of the
 subsystem to private field variables }
 FPopcorn := APopcorn;
 FLights := ALights;
 FScreen := AScreen;
 FAmp := AAmplifier;
 FDVD := ADVDPlayer;
 FCD := ACDPlayer;
 FTuner := ATuner;

7

 FProjector := AProjector;

 { do other processing here if needed }
end;

Now our facade class knows about all the subsystem components to do its job. So lets
hide the complex usage of the home theatre subsystem behind a single method - called
the WatchMovie() method. Remember, the goal of the Facade Pattern is to simplify
the interface to a subsystem. Once implemented, all we need to do to watch a movie, is
pass in the title of the movie we want to watch. Internally the WatchMovie() method
communicates with all the required components of the home theatre system -
completing that long thirteen step process we listed earlier. Here follows the source code
implementation of WatchMovie():

procedure THomeTheatreFacade.WatchMovie(const AMovieTitle:
 string);
begin
 FPopcorn.LoadPopcorn;
 FPopcorn.On;

 FScreen.Down;

 FAmp.On;
 FAmp.SetVolume(50);
 FAmp.SetDVD(FDVD);

 FDVD.On;
 FDVD.LoadMovie(AMovieTitle);
 FDVD.SetSurroundSound;

 FProjector.On;
 FProjector.SetWideScreenMode;

 FLights.On;
 FLights.Dim(20);

 FDVD.Play;
end;

The last part of our simplified subsystem interface we need to implement, is the
EndMovie() method. This will contain the steps to switch off our home theatre system
once we are done watching our movie. The facade class will once again take care of all
the complex communications with each subsystem component. Here follows the source
code implementation for the EndMovie() method:

8

procedure THomeTheatreFacade.EndMovie;
begin
 FLights.Dim(100);

 FDVD.Stop;

 FPopcorn.Off;

 FProjector.Off;

 FDVD.Eject;
 FDVD.Off;

 FAmp.Off;

 FScreen.Up;
end;

Finally, all the hard work is done! Our facade class is now complete, and will allow us
to play and stop movies with ease. What remains now, is for us to change our client
code to rather use the new home theatre facade class, instead of talking directly to the
various complex subsystem components. Here is the code to show how it is done:

{ Watching a movie with the help of the Facade class }
var
 HomeTheatre: THomeTheatreFacade;
begin
 { ...instantiate the home theatre components here... }

 HomeTheatre := THomeTheatreFacade.Create(Popcorn, Lights,
 Screen, Amp, DVD, CD, Tuner, Projector);
 try
 HomeTheatre.WatchMovie('The Bourne Identity');
 HomeTheatre.EndMovie;
 finally
 HomeTheatre.Free;
 end;

 { ...free the home theatre components here... }
end.

The full source code of this example project is included on the cover DVD of the FreeX
magazine. It is written in Object Pascal and can be compiled with the Free Pascal
Compiler3. Figure 3 is a screen-capture showing the runtime output of the completed
home theatre project.

3 The Free Pascal Compiler (http://www.freepascal.org)

9

Final Thoughts
I often get asked questions regarding the similarity between the Facade Pattern and the
Adapter Pattern4. From a distance it might look like they are doing the same thing, but
they are not. As you now know, the Facade Pattern simplifies the interface of a
subsystem. The Adapter Pattern on the other hand, changes the interface of one or more
classes, to what a client expects. A real-world example of the Adapter Pattern can easily
be described with the help of a AC power/travel adapter.

For example: a US tourist would have to get a AC power adapter to change the
American AC plug on his laptop, so that it could fit into a European wall outlet. In terms
of software design patterns, the American AC plug on the laptop is the client, the
European wall outlet is the target interface the tourist expects his laptop to work with,
and the AC power adapter is the adaptor class doing the interface changing.

The confusion between the two patterns often start by the developer thinking that it is
about how many classes get “wrapped” by the Facade or Adapter pattern. This is wrong,
it is rather about their intent. The intent of the Adapter pattern is to alter an interface,

4 Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley 1994. ISBN 0-201-63361-2 (page 139).

10

Figure 3: Output of the completed example project.

whereas the intent of the Facade is to provide a simplified interface.

The other misconception is that the facade class is not limited to only passing through
requests from the client to the subsystem. The facade class is free to add extra
functionality, and make it a more “powerful” interface class in need be.

Similarly, the subsystem is not limited to only one facade class. You might have a very
complex subsystems, which could very well benefit from having more than one facade
class. Different clients could then make requests to different facade classes – depending
on what the client wants done. One facade class could even make requests to another
facade class.

This brings me to the end of my article. I hope you found this information informative,
and that you now have the knowledge to use the Facade Pattern [and hopefully other
design patterns too] in your projects. If nothing else, this is one extra tool in your
“programmers toolbox”!

11

	Stop the bus! What is a Design Pattern?
	Back to our problem example
	Facade to the rescue
	Home Theatre Facade implementation
	Final Thoughts

